Most Powerful Laser to Date Produced; Technology Could Revolutionize Cancer Treatment

Jun 26, 2004

University of Michigan researchers recently produced what is believed to be the highest-intensity laser pulse ever obtained.
The U-M-built laser, called High Energy Repetitive CUos Laser System (HERCULES), is so compact and intense that it could revolutionize the way cancer is treated, researchers say.

The ultra-fast laser pulse generated by HERCULES is 50 times more powerful than all the world's power plants combined, said Gerard Mourou, professor and director of the Center for Ultrafast Optical Science in the Department of Electrical Engineering and Computer Science.

Besides basic research, an important practical application for the laser is ion therapy used to treat cancer patients. Ion therapy is successful, but the particle accelerators used for the treatment are so big and expensive---because they must generate huge amounts of power---that they render the treatment unavailable to the public.

This new type of laser-based accelerator relies on the increased speed of the particle by the enormous electric field of the laser accelerator, which is one million times larger than conventional ones. U-M's laser can be used in compact particle accelerators, which would make the ion therapy more affordable and accessible. Now, only a handful of locations worldwide offer the ion therapy, said Victor Yanovsky, assistant research scientist who designed the HERCULES laser.

Ion therapy is the preferred method to treat cancer because it causes minimal collateral damage to neighboring tissues unlike say, radiation therapy, which damages healthy as well as diseased areas.

The powerful, compact lasers use short pulses. The laser pulse developed at U-M lasts only 30 femtoseconds, the time it takes for light to travel the distance of a blood cell. The pulse was focused on an area 1 1/100th of the width of a hair. U-M researchers announced the development at the 2004 Lasers and Electro-Optics/International Quantum Electronics Conference in San Francisco in late May.

For more information, visit: www.eecs.umich.edu/CUOS/

Source: University of Michigan

Explore further: New filter could advance terahertz data transmission

add to favorites email to friend print save as pdf

Related Stories

Engineers put the 'squeeze' on human stem cells

Feb 10, 2015

After using optical tweezers to squeeze a tiny bead attached to the outside of a human stem cell, researchers now know how mechanical forces can trigger a key signaling pathway in the cells.

Cosmic jets of young stars formed by magnetic fields

Oct 16, 2014

Astrophysical jets are counted among our Universe's most spectacular phenomena: From the centers of black holes, quasars, or protostars, these rays of matter sometimes protrude several light years into space. ...

A powerful new class of lasers is in the making

Nov 20, 2013

Laser intensities have increased dramatically in recent years, opening up a whole new world of applications. To boost scientific research and economic competitiveness the EU is backing a bold new project ...

Recommended for you

New filter could advance terahertz data transmission

52 minutes ago

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

1 hour ago

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

2 hours ago

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

3 hours ago

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

15 hours ago

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.