Update: Huygens Probe Set to Detach From Cassini Orbiter Tonight

Dec 24, 2004
Cassini Huygens

The highlights of the first year of the Cassini-Huygens mission to Saturn can be broken into two chapters: first, the arrival of the Cassini orbiter at Saturn in June, and second, the release of the Huygens probe on Dec. 24, 2004, on a path toward Titan. (read PhysOrg story)

The Huygens probe, built and managed by the European Space Agency (ESA), is bolted to Cassini and fed electrical power through an umbilical cable. It has been riding along during the nearly seven-year journey to Saturn largely in a "sleep" mode, awakened every six months for three-hour instrument and engineering checkups. In three days, it will be cut loose from its mother ship and will coast toward Saturn's moon Titan, arriving on Jan. 14, 2005.

Launched Oct. 15, 1997, on a journey covering 3.5 billion kilometers (2.2 billion miles), Cassini is the most highly instrumented and scientifically capable planetary spacecraft ever flown. It has 12 instruments on the Cassini orbiter and six more on the Huygens probe. The cost of the Cassini mission is approximately $3 billion.

Many of these sophisticated instruments are capable of multiple functions, and the data that they gather will be studied by scientists worldwide.

Aerosol Collector and Pyrolyser (ACP) will collect aerosols for chemical-composition analysis. After extension of the sampling device, a pump will draw the atmosphere through filters which capture aerosols. Each sampling device can collect about 30 micrograms of material.

Descent Imager/Spectral Radiometer (DISR) can take images and make spectral measurements using sensors covering a wide spectral range. A few hundred metres before impact, the instrument will switch on its lamp in order to acquire spectra of the surface material.

Doppler Wind Experiment (DWE) uses radio signals to deduce atmospheric properties. The probe drift caused by winds in Titan's atmosphere will induce a measurable Doppler shift in the carrier signal. The swinging motion of the probe beneath its parachute and other radio-signal-perturbing effects, such as atmospheric attenuation, may also be detectable from the signal.

Gas Chromatograph and Mass Spectrometer (GCMS) is a versatile gas chemical analyser designed to identify and quantify various atmospheric constituents. It is also equipped with gas samplers which will be filled at high altitude for analysis later in the descent when more time is available.

Huygens Atmosphere Structure Instrument (HASI) comprises sensors for measuring the physical and electrical properties of the atmosphere and an on-board microphone that will send back sounds from Titan.

Surface Science Package (SSP) is a suite of sensors to determine the physical properties of the surface at the impact site and to provide unique information about its composition. The package includes an accelerometer to measure the impact deceleration, and other sensors to measure the index of refraction, temperature, thermal conductivity, heat capacity, speed of sound, and dielectric constant of the (liquid) material at the impact site.

"As partners with ESA, one of our obligations was to carry the Huygens probe to Saturn and drop it off at Titan," said Robert T. Mitchell, Cassini program manager at NASA's Jet Propulsion Laboratory, Pasadena, Calif. "We've done the first part, and on Christmas Eve we will release Huygens and tension-loaded springs will gently push it away from Cassini onto a ballistic free-fall path to Titan."

Once freed from Cassini, the Huygens probe will remain dormant until the onboard timer wakes it up shortly before the probe reaches Titan's upper atmosphere on Jan. 14. Then it will begin a dramatic plunge through Titan's murky atmosphere, tasting the chemical makeup and composition as it descends to touch down on its surface. The data gathered during this 2-1/2 hour descent will be transmitted from the probe to the Cassini orbiter. Afterward, Cassini will point its antenna to Earth and relay the data through NASA's Deep Space Network to JPL and on to ESA's Space Operations Center in Darmstadt, Germany, which serves as the operations center for the Huygens probe mission. From this control center, ESA engineers will be tracking the probe and scientists will be standing by to process the data from the probe's six instruments.

Currently, both the orbiter and the probe are on an impact trajectory with Titan. This is the only way to ensure that Cassini delivers the probe in the right location. A confirmation of successful release is expected to be received from NASA's Deep Space Network tracking stations at Madrid, Spain and Goldstone, Calif., shortly before 8:00 p.m. PST on Dec. 24. A team of JPL engineers and ESA mission managers will be monitoring spacecraft activities at JPL during the release phase of the mission.

On Dec. 27, the Cassini orbiter will perform a deflection maneuver to keep it from following Huygens into Titan's atmosphere. This maneuver will also establish the required geometry between the probe and the orbiter for radio communications during the probe descent.

Two of the instruments on ESA's Huygens probe, the descent imager and spectral radiometer camera and the gas chromatograph-mass spectrometer, are contributions from NASA and American academia.

The imaging camera will take advantage of the Huygens probe's rotation, using two imagers to observe the surface of Titan during the late stages of descent for a view of the regions around the impact site. A side-looking imager will view the horizon and the underside of any cloud deck. More than just a camera, the instrument is designed to measure concentrations of argon and methane in the atmosphere and determine the size and density of particles. The instrument will also determine if the local surface is a solid or liquid, and if solid, its topography. The principal investigator is Dr. Martin G. Tomasko of the University of Arizona, Tucson, Ariz.

Although Titan's atmosphere is primarily nitrogen and methane, scientists believe it contains many other gases that are present only in small amounts. These trace gases can reveal critical details about the origin and evolution of Titan's atmosphere. Because trace gases are rare, they are difficult or impossible to observe remotely, so direct measurements must be made.

The gas chromatograph-mass spectrometer instrument will sample gas directly from Titan's atmosphere as the Huygens probe descends by parachute. Data from the instrument will allow researchers to investigate the chemical composition, origin and evolution of the atmosphere of Titan. The instrument was designed and built by NASA's Goddard Space Flight Center, Greenbelt, Md., and is led by the principal investigator, Dr. Hasso Niemann.

Source: NASA

Explore further: Two Galileo satellites lose their way

add to favorites email to friend print save as pdf

Related Stories

Titan offers clues to atmospheres of hazy planets

Jul 28, 2014

When hazy planets pass across the face of their star, a curious thing happens. Astronomers are not able to see any changes in the range of light coming from the star and planet system.

MIPT-based researcher models Titan's atmosphere

Jul 24, 2014

A researcher from Moscow Institute of Physics and Technology, Prof. Vladimir Krasnopolsky, who heads the Laboratory of High Resolution Infrared Spectroscopy of Planetary Atmospheres, has published the results of the comparison ...

Cassini celebrates 10 years exploring Saturn

Jun 26, 2014

It has been a decade since a robotic traveler from Earth first soared over rings of ice and fired its engine to fall forever into the embrace of Saturn. On June 30, the Cassini mission will celebrate 10 years ...

Cassini captures familiar forms on Titan's dunes

Apr 08, 2014

(Phys.org) —The moons of our Solar System are brimming with unusual landscapes. However, sometimes they look a little more familiar, as in this new radar image from the Cassini orbiter. The image shows ...

Mystery of the missing waves on Titan

Jul 23, 2013

One of the most shocking discoveries of the past 10 years is how much the landscape of Saturn's moon Titan resembles Earth. Like our own blue planet, the surface of Titan is dotted with lakes and seas; it ...

Cassini sees Titan cooking up smog

Feb 05, 2013

(Phys.org)—A paper published this week using data from NASA's Cassini mission describes in more detail than ever before how aerosols in the highest part of the atmosphere are kick-started at Saturn's moon ...

Recommended for you

Two Galileo satellites lose their way

2 hours ago

Two European Galileo satellites launched as part of a navigation system designed to rival GPS have failed to locate their intended orbit, launch firm Arianespace said Saturday.

SpaceX rocket explodes during test flight

11 hours ago

A SpaceX rocket exploded in midair during a test flight, though no one was injured, as the company seeks to develop a spacecraft that can return to Earth and be used again.

Amazing raw Cassini images from this week

Aug 22, 2014

When Saturn is at its closest to Earth, it's three-quarters of a billion miles away—or more than a billion kilometers! That makes these raw images from the ringed planet all the more remarkable.

Europe launches two navigation satellites

Aug 22, 2014

Two satellites for Europe's rival to GPS were lifted into space on Friday to boost the Galileo constellation to six orbiters of a final 30, the European Space Agency (ESA) said.

SpaceX gets 10-year tax exemption for Texas site

Aug 22, 2014

Cameron County commissioners have agreed to waive 10 years of county taxes as part of an agreement bringing the world's first commercial site for orbital rocket launches to the southernmost tip of Texas.

User comments : 0