Superconductors for electrical, defense, space, medical applications

Dec 15, 2004

A Wright State engineering professor Sharmila Mukhopadhyay recently received a $950,000 grant for superconductor research with applications that interest the electric power generation industry, the military, space technologists and the medical community.
Superconductors can transmit electric current with zero resistance,” she explained, “and our research is centered on finding ways to make these materials more efficient and economical.” She said copper wire is the main conductor now in use, but transmission lines can carry significantly more power if copper can be replaced by superconducting cables. The superconducting material of choice is an oxide of yttrium, barium and copper that will be coated on metal coils.

Sharmila Mukhopadhyay, Ph.D., a professor of materials science and engineering with the Wright State College of Engineering and Computer Science, received funding from the U.S. Department of Energy for the 18-month project.

Mukhopadhyay, who has received $2.3 million for materials research at Wright State during the past seven years, said the energy department and power generation companies have a renewed interest in superconductor research. “We are studying the superconducting materials at their basic, atomic level to identify ways that can increase the efficiency of transmission lines. Superconductors can also be used in high speed magnetic trains and flywheels. Flywheels, or high speed rotating devices, can help the power generation companies store off-peak power, which can later be converted to electricity during peak demand hours. All this technology can help reduce the chances of power blackouts like the major one that hit the Midwest and East Coast last year.”

She said superconductor research in recent years is becoming more popular. “The earlier superconductors used liquid helium as the cooling medium, but the recent ones can use liquid nitrogen, which is much cheaper,” she explained.

The WSU research engineer is working with the Air Force Research Laboratory at Wright-Patterson Air Force Base in Dayton on military applications. The superconductors can improve the electrical system efficiency in jet engines for fighter bombers and transport aircraft because they are lighter and smaller than regular conducting devices. She said that the Air Force’s objective is to provide megawatts of power in small, lightweight packages. Weapons applications include missile development because superconductors operate at higher temperatures with substantial weight savings and lower cooling requirements.

Space related organizations will also be interested, she added, because the research involves finding more efficient power generation in air and space for projects involving spacecraft, satellite orbit transfer vehicles and reusable space launch vehicles.

The research engineer, whose training includes materials science at Cornell University and solid state physics at the Indian Institute of Technology, said medical applications include use in MRI machines and other magnetic medical devices.

Mukhopadhyay is the principal investigator on the project, which also involves the State University of New York at Albany in addition to the Air Force Research Lab.

Source: Wright State University

Explore further: Galaxy dust findings confound view of early Universe

add to favorites email to friend print save as pdf

Related Stories

Pinholes are pitfalls for high performance solar cells

23 hours ago

The most popular next-generation solar cells under development may have a problem – the top layer is full of tiny pinholes, researchers at the Okinawa Institute of Science and Technology Graduate University ...

Team advances fuel cell car technology

Jan 29, 2015

Dr. Yossef Elabd, professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University, has developed two fuel cell vehicle platforms for both present day enhancements and future innovation.

Recommended for you

Galaxy dust findings confound view of early Universe

2 hours ago

What was the Universe like at the beginning of time? How did the Universe come to be the way it is today?—big questions and huge attention paid when scientists attempt answers. So was the early-universe ...

Evidence mounts for quantum criticality theory

17 hours ago

A new study by a team of physicists at Rice University, Zhejiang University, Los Alamos National Laboratory, Florida State University and the Max Planck Institute adds to the growing body of evidence supporting ...

Scaling up armor systems

23 hours ago

Dermal modification is a significant part of evolution, says Ranajay Ghosh, an associate research scientist in the College of Engineering. Almost every organism has something on its skin that provides important ...

Seeking cracks in the Standard Model

23 hours ago

In particle physics, it's our business to understand structure. I work on the Large Hadron Collider (LHC) and this machine lets us see and study the smallest structure of all; unimaginably tiny fundamental partic ...

The first optically synchronised free-electron laser

Jan 30, 2015

Scientists at DESY have developed and implemented an optical synchronisation system for the soft X-ray free-electron laser FLASH, achieving facility-wide synchronisation with femtosecond precision. The performance ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.