New class of airborne particles unaccounted for in climate models

Dec 14, 2004
Secondary electron (SE) images of CaCO3 and China loess particles before and after reaction with gaseous HNO3 in the presence of

Dry dust reacts with air pollutants to form dewy particles whose sunlight-reflecting and cloud-altering properties are unaccounted for in atmospheric models. "Calcite-containing dust particles blow into the air and encounter gaseous nitric acid in polluted air from factories to form an entirely new particle of calcium nitrate," said Alexander Laskin, a senior research scientist at the Department of Energy's Pacific Northwest National Laboratory in Richland, Washington.

"These nitrates have optical and chemical properties that are absolutely different from those of originally dry dust particles, and climate models need to be updated to reflect this chemistry." Calcite dust is ubiquitous in arid areas such as Israel, where this past winter Laskin and colleagues Vicki Grassian, chemistry professor at the University of Iowa, and Yinon Rudich, professor of environmental sciences and energy research at the Weizmann Institute of Science, collected particles for analysis. Laskin presented their findings Tuesday at the American Geophysical Union fall meeting.

Working from a mountaintop, the team collected dust that had blown in from the northern shores of Egypt, Sinai and southern Israel. The particles had mingled with air containing pollutants that originated from Cairo. They analyzed nearly 2,000 individual micron-sized particles and observed the physical and chemical changes with an array of techniques at the W.R. Wiley Environmental Molecular Sciences Laboratory at PNNL.

A key change in the properties of the newly formed nitrate particles is that they begin to absorb water and retain the moisture. These wet particles can scatter and absorb sunlight -- presenting climate modelers, who need to know where the energy is going, a new wild card to deal with. Companion studies of dust samples from the Sahara and the Saudi coast and loess from China show that the higher the calcium in the mineral, the more reactive they are in with nitric acid. And once the particle is changed, it stays that way.

"When dust storms kick up these particles and they enter polluted areas, the particles change," Laskin said. "To what extent this is happening globally, as more of the world becomes industrialized, we don't know. But now we have the laboratory and field evidence that shows it is definitely happening. The story is much more complicated than anybody thought."

Explore further: Rosetta's comet: In the shadow of the coma

add to favorites email to friend print save as pdf

Related Stories

Tracking down the menace in Mexico City smog

Sep 08, 2008

A new report by scientists who are part of the international MILAGRO Campaign indicates that some of the most harmful air pollution in Mexico City may not come from motor vehicles but instead originates with ...

Recommended for you

Rosetta's comet: In the shadow of the coma

6 hours ago

This NAVCAM mosaic comprises four individual images taken on 20 November from a distance of 30.8 km from the centre of Comet 67P/C-G. The image resolution is 2.6 m/pixel, so each original 1024 x 1024 pixel ...

DNA survives critical entry into Earth's atmosphere

Nov 26, 2014

The genetic material DNA can survive a flight through space and re-entry into the earth's atmosphere—and still pass on genetic information. A team of scientists from UZH obtained these astonishing results ...

Team develops cognitive test battery for spaceflight

Nov 26, 2014

Space is one of the most demanding and unforgiving environments. Human exploration of space requires astronauts to maintain consistently high levels of cognitive performance to ensure mission safety and success, and prevent ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.