Stellar nova simulations

Dec 05, 2004

New results from experiments at the Holifield Radioactive Ion Beam Facility will lead to improved models and perhaps a better understanding of what happens when stars explode. Dan Bardayan, Jeff Blackmon and Michael Smith of Oak Ridge National Laboratory's Physics Division obtained the measurements utilizing unique beams of fluorine-18, a radioactive subatomic nucleus.

The researchers were surprised to find a factor of two to three decrease from what was previously thought in the rates of certain nuclear reactions in exploding stars.

This is significant because these reactions destroy naturally occurring fluorine-18 and make it difficult to observe its decay. The team performed new computer simulations developed by colleague Raph Hix using the revised reaction rates and found that three times more radioactive fluorine-18 survived to be ejected into space.

The decay of this fluorine-18 should be visible to multi-million dollar orbital satellites and provides an important window into the workings of novae. Future research will focus on better defining other fusion reactions that are crucial input to stellar explosion studies. The work is funded by the Department of Energy's Office of Science.

Source: ORNL

Explore further: Fluctuation X-ray scattering

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

First glimpse inside a macroscopic quantum state

5 hours ago

In a recent study published in Physical Review Letters, the research group led by ICREA Prof at ICFO Morgan Mitchell has detected, for the first time, entanglement among individual photon pairs in a beam ...

Theory of the strong interaction verified

18 hours ago

The fact that the neutron is slightly more massive than the proton is the reason why atomic nuclei have exactly those properties that make our world and ultimately our existence possible. Eighty years after ...

Fluctuation X-ray scattering

22 hours ago

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.