Enzyme cocktail converts cellulosic materials, water into hydrogen fuel

Feb 11, 2009

Tomorrow's fuel-cell vehicles may be powered by enzymes that consume cellulose from woodchips or grass and exhale hydrogen.

Researchers at Virginia Tech, Oak Ridge National Laboratory (ORNL), and the University of Georgia have produced hydrogen gas pure enough to power a fuel cell by mixing 14 enzymes, one coenzyme, cellulosic materials from nonfood sources, and water heated to about 90 degrees (32 C).

The group announced three advances from their "one pot" process: 1) a novel combination of enzymes, 2) an increased hydrogen generation rate -- to as fast as natural hydrogen fermentation, and 3) a chemical energy output greater than the chemical energy stored in sugars - the highest hydrogen yield reported from cellulosic materials. "In addition to converting the chemical energy from the sugar, the process also converts the low-temperature thermal energy into high-quality hydrogen energy - like Prometheus stealing fire," said Percival Zhang, assistant professor of biological systems engineering in the College of Agriculture and Life Sciences at Virginia Tech.

"It is exciting because using cellulose instead of starch expands the renewable resource for producing hydrogen to include biomass," said Jonathan Mielenz, leader of the Bioconversion Science and Technology Group at ORNL.

The researchers used cellulosic materials isolated from wood chips, but crop waste or switchgrass could also be used. "If a small fraction - 2 or 3 percent - of yearly biomass production were used for sugar-to-hydrogen fuel cells for transportation, we could reach transportation fuel independence," Zhang said. (He added that the 3 percent figure is for global transportation needs. The U.S. would actually need to convert about 10 percent of biomass - which would be 1.3 billion tons of usable biomass).

More information:

The most recent research is published in the Wiley journal ChemSusChem (Chemistry and Sustainability), in the article "Spontaneous High-Yield Production of Hydrogen from Cellulosic Materials and Water Catalyzed by Enzyme Cocktails," by Virginia Tech student Xinhao Ye and post doctoral associate Yiran Wang, both in biological systems engineering; Robert C. Hopkins and Michael W. W. Adams of the Department of Biochemistry and Molecular Biology at the University of Georgia; Barbara R. Evans and Mielenz of the ORNL Chemical Sciences and Biosciences Divisions, respectively; and Zhang. (www3.interscience.wiley.com/journal/114278546/home)

Learn more about Zhang's work at filebox.vt.edu/users/ypzhang/research.htm .

Source: Virginia Tech

Explore further: Active, biodegradable packaging for oily products

add to favorites email to friend print save as pdf

Related Stories

Keeping hydrogen from cracking metals

Oct 28, 2014

Metal alloys such as steel and zirconium that are used in pipes for nuclear reactors and oil fields naturally acquire a protective oxide or sulfide layer. But hydrogen penetration can lead to their breakdown ...

Waste, an alternative source of energy to petroleum

Oct 23, 2014

The group led by Martín Olazar, researcher in the UPV/EHU-University of the Basque Country's Department of Chemical Engineering, is studying the development of sustainable refineries where it is possible ...

Surface properties command attention

Oct 17, 2014

Whether working on preventing corrosion for undersea oil fields and nuclear power plants, or for producing electricity from fuel cells or oxygen from electrolyzers for travel to Mars, associate professor ...

Graphene proves a long-lasting lubricant

Oct 14, 2014

When trying to design a mechanical system to last as long as possible, scientists and engineers have to find ways of overcoming friction. While researchers have found many materials that help to reduce friction, ...

Recommended for you

Developing the battery of the future

6 hours ago

The search for the next generation of batteries has led researchers at the Canadian Light Source synchrotron to try new methods and materials that could lead to the development of safer, cheaper, more powerful, ...

Water purification at the molecular level

15 hours ago

(Phys.org) —Fracking for oil and gas is a dirty business. The process uses millions of gallons of water laced with chemicals and sand. Most of the contaminated water is trucked to treatment plants to be ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

DonR
5 / 5 (1) Feb 11, 2009
I would have thought that we could get a greater yield from the bio-mass by producing the hydrogen in 'factories' and then powering the fuel cells with the harvested hydrogen.

This article seems to indicate we'll all have something akin to a "Mr Fusion" (ref: Back to the Future, Part II) attached to our cars.
NeilFarbstein
2.5 / 5 (2) Feb 11, 2009
somebody has suggested using glucose dehydrogenase to make hydrogen from glucose stored in fuel tanks.
That's a lot simpler than using a mix of 14 different enzymes.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.