New biomass heater: A 'new era' of efficiency and sustainability

Feb 11, 2009

Millions of homes in rural areas of Far Eastern countries are heated by charcoal burned on small, hibachi-style portable grills. Scientists in Japan are now reporting development of an improved “biomass charcoal combustion heater” that they say could open a new era in sustainable and ultra-high efficiency home heating. Their study was published in ACS’ Industrial & Engineering Chemistry Research.

In the study, Amit Suri, Masayuki Horio and colleagues note that about 67 percent of Japan is covered with forests, with that biomass the nation’s most abundant renewable energy source. Wider use of biomass could tap that sustainable source of fuel and by their calculations cut annual carbon dioxide emissions by 4.46 million tons.

Using waste biomass charcoal, their heater recorded a thermal efficiency of 60-81 percent compared to an efficiency of 46-54 percent of current biomass stoves in Turkey and the U.S. “The charcoal combustion heater developed in the present work, with its fast startup, high efficiency, and possible automated control, would open a new era of massive but small-scale biomass utilization for a sustainable society,” the authors say.

More information: Industrial & Engineering Chemistry Research , Development of Biomass Charcoal Combustion Heater for Household Utilization

Provided by ACS

Explore further: Water purification at the molecular level

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Water purification at the molecular level

1 hour ago

(Phys.org) —Fracking for oil and gas is a dirty business. The process uses millions of gallons of water laced with chemicals and sand. Most of the contaminated water is trucked to treatment plants to be ...

Why plants don't get sunburn

22 hours ago

Plants rely on sunlight to make their food, but they also need protection from its harmful rays, just like humans do. Recently, scientists discovered a group of molecules in plants that shields them from ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

SDMike
not rated yet Feb 11, 2009
Unfortunately no one can afford to buy this complex contraption and it requires a degree in mechanical engineering to operate the dang thing. Go look at the diagram!
lengould100
not rated yet May 12, 2009
Photosynthesis efficiency in conversion of insolation to harvestable chemical potential energy = 1% in temperate climates with good fertility and rainfall. After harvesting, chipping, torrefaction, transport to power plant, use 0.05%. Then burn in a 33% efficient boiler -> steam turbine, 0.05% x 33% = 0.0165% overall efficiency, insolation to electricity.

Means that, AT ANY GIVEN LOCATION, a 15% efficient solar-thermal plant can do the same job with 0.0165/15 = 0.0011 the area of the biomass plantation.

So which is better? 1 sq km of solar thermal which never needs re-planting and doesn't permanently damage anything, or 909.1 sq km of biomass plantation which depletes the soils, etc. etc. ? (HINT: the answer is solar thermal OR PV -> electrical)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.