Two-step chemical process turns raw biomass into biofuel

Feb 10, 2009 by Nicole Miller

(PhysOrg.com) -- Taking a chemical approach, researchers at the University of Wisconsin-Madison have developed a two-step method to convert the cellulose in raw biomass into a promising biofuel. The process, which is described in the Wednesday, Feb. 11 issue of the Journal of the American Chemical Society, is unprecedented in its use of untreated, inedible biomass as the starting material.

The key to the new process is the first step, in which cellulose is converted into the "platform" chemical 5-hydroxymethylfurfural (HMF), from which a variety of valuable commodity chemicals can be made. "Other groups have demonstrated some of the individual steps involved in converting biomass to HMF, starting with glucose or fructose," says Ronald Raines, a professor with appointments in the Department of Biochemistry and the Department of Chemistry. "What we did was show how to do the whole process in one step, starting with biomass itself."

Raines and graduate student Joseph Binder, a doctoral candidate in the chemistry department, developed a unique solvent system that makes this conversion possible. The special mix of solvents and additives, for which a patent is pending, has an extraordinary capacity to dissolve cellulose, the long chains of energy-rich sugar molecules found in plant material. Because cellulose is one of the most abundant organic substances on the planet, it is widely seen as a promising alternative to fossil fuels.

"This solvent system can dissolve cotton balls, which are pure cellulose," says Raines. "And it's a simple system-not corrosive, dangerous, expensive or stinky."

This approach simultaneously bypasses another vexing problem: lignin, the glue that holds plant cell walls together. Often described as intractable, lignin molecules act like a cage protecting the cellulose they surround. However, Raines and Binder used chemicals small enough to slip between the lignin molecules, where they work to dissolve the cellulose, cleave it into its component pieces and then convert those pieces into HMF.

In step two, Raines and Binder subsequently converted HMF into the promising biofuel 2,5-dimethylfuran (DMF). Taken together, the overall yield for this two-step biomass-to-biofuel process was 9 percent, meaning that 9 percent of the cellulose in their corn stover samples was ultimately converted into biofuel.

"The yield of DMF isn't fabulous yet, but that second step hasn't been optimized," says Raines, who is excited about DMF's prospects as a biofuel. DMF, he notes, has the same energy content as gasoline, doesn't mix with water and is compatible with the existing liquid transportation fuel infrastructure. It has already been used as a gasoline additive.

In addition to corn stover, Raines and Binder have tested their method using pine sawdust, and they're looking for more samples to try out. "Our process is so general I think we can make DMF or HMF out of any type of biomass," he says.

Provided by University of Wisconsin-Madison

Explore further: Researchers create engineered energy absorbing material

add to favorites email to friend print save as pdf

Related Stories

Mesquite a complementary biofuel feedstock

Aug 04, 2014

As requirements grow for use of cellulosic biofuels to meet the energy needs of the nation, researchers look at potential feedstocks and any effects these alternative sources may have on greenhouse gas emissions.

Improving commerical viability of biofuels

Jul 08, 2014

(Phys.org) —A University of California, Riverside Bourns College of Engineering professor is one of the authors of a paper recently published in Science that outlines ways companies can commercialize and profit from what w ...

Recommended for you

The fluorescent fingerprint of plastics

1 hour ago

LMU researchers have developed a new process which will greatly simplify the process of sorting plastics in recycling plants. The method enables automated identification of polymers, facilitating rapid separation ...

Water and sunlight the formula for sustainable fuel

5 hours ago

An Australian National University (ANU) team has successfully replicated one of the crucial steps in photosynthesis, opening the way for biological systems powered by sunlight which could manufacture hydrogen ...

Rice chemist wins 'Nobel Prize of Cyprus'

5 hours ago

Rice University organic chemist K.C. Nicolaou has earned three prestigious international honors, including the Nemitsas Prize, the highest honor a Cypriot scientist can receive and one of the most prestigious ...

Researchers create engineered energy absorbing material

6 hours ago

(Phys.org) —Materials like solid gels and porous foams are used for padding and cushioning, but each has its own advantages and limitations. Gels are effective as padding but are relatively heavy; gel performance ...

Solar fuels as generated by nature

7 hours ago

(Phys.org) —Society's energy supply problems could be solved in the future using a model adopted from nature. During photosynthesis, plants, algae and some species of bacteria produce sugars and other energy-rich ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet Feb 10, 2009

GOOD WORK!
SDMike
not rated yet Feb 11, 2009
Oh NO! This discovery will simply increase the western world's exploitation of nature and slow the inevitable return of man to his natural place - a cave.