Genetic adaptations are key to microbe's survival in challenging environment

Feb 06, 2009

The research focused on the bacterium Nautilia profundicola, a microbe that survives near deep-sea hydrothermal vents. Photosynthesis cannot occur in this dark environment, where hot, toxic fluids oozing from below the seafloor combine with cold seawater at very high pressures.

The study, involving scientists at the University of Delaware, the Davis and Riverside campuses of the University of California, the Universities of Louisville, KY, and Waikato, New Zealand, and the J. Craig Venter Institute, combined genome analysis with physiological and ecological observations to investigate the importance of one gene in N. profundicola. Previous studies found the gene only in microorganisms growing in temperatures greater than 80oC, but N. profundicola thrives best at much lower temperatures. The gene's presence in N. profundicola suggests that it might play a role in the bacterium's ability to survive rapid and frequent temperature fluctuations in its environment.

The researchers also uncovered further adaptations to the vent environment, including genes necessary for growth and sensing environmental conditions, and a new route for nitrate assimilation related to how other bacteria use ammonia as an energy source.

These results help to explain how microbes survive near deep-sea hydrothermal vents, where conditions are thought to resemble those found on early Earth, as described in the study. Improved understanding of microbes living in these conditions may aid our understanding of how life evolved here.

Paper: Campbell BJ, Smith JL, Hanson TE, Klotz MG, Stein LY, et al. (2009) Adaptations to Submarine Hydrothermal Environments Exemplified by the Genome of Nautilia profundicola. PLoS Genet 5(2): e1000362. doi:10.1371/journal.pgen.1000362
www.plosgenetics.org/article/i… journal.pgen.1000362

Source: Public Library of Science

Explore further: Researchers develop computational model to simulate bacterial behavior

add to favorites email to friend print save as pdf

Related Stories

Key building block of life may have come from deep space

Nov 14, 2014

Researchers at UH Mānoa's Department of Chemistry have provided compelling evidence that glycerol, a key molecule in the origin of Earth's living organisms, may have occurred in space more than 4 billion ...

Recommended for you

China starts relocating endangered porpoises: Xinhua

2 hours ago

Chinese authorities on Friday began relocating the country's rare finless porpoise population in a bid to revive a species threatened by pollution, overfishing and heavy traffic in their Yangtze River habitat, ...

A long-standing mystery in membrane traffic solved

4 hours ago

In 2013, James E. Rothman, Randy W. Schekman, and Thomas C. Südhof won the Nobel Prize in Physiology or Medicine for their discoveries of molecular machineries for vesicle trafficking, a major transport ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.