Turning down gene expression promotes nerve cell maintenance

Feb 02, 2009

Anyone with a sweet tooth knows that too much of a good thing can lead to negative consequences. The same can be said about the signals that help maintain nerve cells, as demonstrated in a new study of myelin, a protein key to efficient neuronal transmission.

Normal nerve cells have a myelin sheath, which, much like the insulation on a cable, allows for rapid and efficient signal conduction. However, in several diseases - the most well-known being multiple sclerosis - demyelination processes cause the breakdown of this "insulation", and lead to deficits in perception, movement, cognition, etc. Thus, in order to help patients of demyelinating disease, researchers are studying the pathways that control myelin formation and maintenance.

A new study by University of California scientists examines the role of a structural protein, called lamin, in maintaining myelin. They found that, while lamin is necessary in the initial stages of myelin formation, too much lamin promotes myelin breakdown. Further investigation led the researchers to the discovery of a signal that fine-tunes lamin expression. This signal, a microRNA called miR-23, can turn down lamin gene expression, and thereby prevent demyelination due to lamin overexpression.

This new work reported in Disease Models & Mechanisms (DMM), dmm.biologists.org, adds another piece to the puzzle that is understanding myelin formation and maintenance. Additionally, the identification of miR-23 as a myelin regulator introduces a new potential drug target in developing treatments for demyelinating illness.

The report was written Shu-Ting Lin and Ying-Hui Fu at the Department of Neurology, University of California San Francisco. The report is published in the March/April issue of Disease Models & Mechanisms (DMM), a research journal published by The Company of Biologists, a non-profit based in Cambridge, UK.

Source: The Company of Biologists

Explore further: New conversion process turns biomass 'waste' into lucrative chemical products (w/ Video)

add to favorites email to friend print save as pdf

Related Stories

Proteomics reveals the E-cadherin interaction network

Dec 03, 2014

Researchers at the Mechanobiology Institute have comprehensively described the network of proteins involved in cell-cell adhesions, or the cadherin interactome. This work was published in Science Signaling . ...

Tracing water channels in cell surface receptors

Sep 09, 2014

G protein-coupled receptors (GPCRs) are the largest class of cell surface receptors in our cells, involved in signal transmission across the cell membrane. One of the biggest questions is how a signal recognized at the extracellular ...

Recommended for you

Protections blocked, but sage grouse work goes on

13 hours ago

(AP)—U.S. wildlife officials will decide next year whether a wide-ranging Western bird species needs protections even though Congress has blocked such protections from taking effect, Interior Secretary ...

Contrasting views of kin selection assessed

15 hours ago

In an article to be published in the January issue of BioScience, two philosophers tackle one of the most divisive arguments in modern biology: the value of the theory of "kin selection."

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.