How your body clock avoids hitting the snooze button

Jan 29, 2009

Scientists from Queen Mary, University of London have discovered a new part of the mechanism which allows our bodyclocks to reset themselves on a molecular level.

Circadian clocks regulate the daily fluctuations of many physiological and behavioural aspects in life, and are synchronised with our surrounding environment via light or temperature cycles. Natural changes in the length of the day mean that an animal's circadian clock often has to reset itself on a molecular level, to avoid getting out of sync with the changing calendar.

Professor Ralf Stanewsky and his team from Queen Mary's School of Biological and Chemical Sciences study the circadian clocks of Drosophila, a type of fruit fly. Writing in the journal Current Biology, they report that the resetting process is governed by three factors, called Cryptochrome, Jetlag and Timeless.

The team's findings suggest that the light responses of circadian clocks are fine tuned on a molecular, by small differences in the binding affinities of clock proteins.

Professor Stanewsky explains: "A circadian photoreceptor called Cry is activated by light in the blue spectrum. Once active, Cry then becomes able to bind to a protein called Jetlag. The Jetlag protein then helps to destroy another protein called Timeless, which is used to reset the bodyclock.

"Crucially though, we found that Jetlag also helps to destroy the original photoreceptor Cry itself. This allows the Timeless protein to reaccumulate during the next day, making sure that the clock mechanism continues to tick."

Source: Queen Mary, University of London

Explore further: Genetic code of the deadly tsetse fly unraveled

add to favorites email to friend print save as pdf

Related Stories

For resetting circadian rhythms, neural cooperation is key

Apr 17, 2014

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

Chrono, the last piece of the circadian clock puzzle?

Apr 15, 2014

All organisms, from mammals to fungi, have daily cycles controlled by a tightly regulated internal clock, called the circadian clock. The whole-body circadian clock, influenced by the exposure to light, dictates the wake-sleep ...

Vibrations influence the circadian clock of a fruit fly

Jan 31, 2014

The internal circadian clock of a Drosophila (fruit fly) can be synchronised using vibrations, according to research published today in the journal Science. The results suggest that an animal's own moveme ...

Time is of the essence

Feb 05, 2014

New findings in mice suggest that merely changing meal times could have a significant effect on the levels of triglycerides in the liver. The results of this Weizmann Institute of Science study, recently ...

Recommended for you

Genetic code of the deadly tsetse fly unraveled

5 minutes ago

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

5 minutes ago

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Engineered E. coli produces high levels of D-ribose

55 minutes ago

D-ribose is a commercially important sugar used as a sweetener, a nutritional supplement, and as a starting compound for synthesizing riboflavin and several antiviral drugs. Genetic engineering of Escherichia co ...

Cell resiliency surprises scientists

1 hour ago

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...

User comments : 0

More news stories

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Engineered E. coli produces high levels of D-ribose

D-ribose is a commercially important sugar used as a sweetener, a nutritional supplement, and as a starting compound for synthesizing riboflavin and several antiviral drugs. Genetic engineering of Escherichia co ...