Human DNA repair process recorded in action (Video)

Jan 29, 2009
This schematic depicts molecules of the DNA repair protein, Rad51(green ovals), assembling into a filament on an optically trapped DNA molecule. Below, a series of images shows a fluorescently-labeled Rad51/DNA filament growing progressively longer over the course of 10 minutes. Credit: Stephen Kowalczykowski/UC Davis

(PhysOrg.com) -- A key phase in the repair process of damaged human DNA has been observed and visually recorded by a team of researchers at the University of California, Davis. The recordings provide new information about the role played by a protein known as Rad51, which is linked to breast cancer, in this complex and critical process.

The breakthrough comes a decade after Stephen Kowalczykowski, a distinguished professor of microbiology and the study's principal investigator, and Ron Baskin, professor emeritus of molecular and cellular biology, first began developing methods of labeling molecules with fluorescent markers and observing them at work using optical trapping of individual DNA molecules and advanced microscopy techniques. In 2006, the researchers recorded a portion of the bacterial DNA repair process, a system considerably less complex than its human counterpart. The new study was published in the Proceedings of the National Academy of Sciences on Jan. 13.

This video is not supported by your browser at this time.
This filament composed of a fluorescently-labeled DNA molecule and the repair protein Rad51 grows progressively brighter and longer as more and more Rad51 molecules assemble onto the DNA. The sphere on the left is an optical trap holding the DNA in place. Video: Stephen Kowalczykowski/UC Davis

Human DNA is under constant assault from harmful agents such as ultraviolet sunlight, tobacco smoke and a myriad of chemicals, both natural and man-made. Because damage can lead to cancer, cell death and mutations, an army of proteins and enzymes are mobilized into action whenever it occurs.

Rad51 takes a leading role in the action. Always on call in the cell, molecules of the protein assemble into a long filament along a damaged or broken segment of DNA, where they help stretch out the coiled strands and align them with corresponding segments on the cell's second copy of the chromosome, which serves as a template for reconstruction. Because this protein is regulated by a gene linked to increased risk of breast cancer, BRCA2, it is also thought to play a role in suppression of that disease.

With the ability to watch the assembly of individual filaments of Rad51 in real time, Kowalczykowski's team made a number of discoveries. Among those are that, in contrast to their bacterial counterparts, Rad51 filaments don't grow indefinitely. This indicates that there is an as-yet undiscovered mechanism that regulates the protein's growth, Kowalczykowski said.

Another surprising difference between the human and bacterial processes, Kowalczykowski said, is that Rad51 doesn't fall away from the DNA when repair is complete. Instead, proteins that motor along DNA are required to dislodge it.

"From a practical point of view, being able to record these single molecules gives us insightful information regarding the assembly process," the researcher said. "Now we're able to measure this in a quantifiably meaningful way."

Provided by University of California - Davis

Explore further: Pollen on birds shows feeding grounds

add to favorites email to friend print save as pdf

Related Stories

Manatees could lose their endangered species status

22 minutes ago

About 2,500 manatees have perished in Florida over the last four years, heightening tension between conservationists and property owners as federal officials prepare to decide whether to down-list the creature to threatened ...

Recommended for you

Neutering project curbed feral cat population

30 minutes ago

(HealthDay)—An intensive effort to sterilize feral cats reduced the number of felines taken to an animal shelter in Florida and euthanized, a new study reveals.

Researchers look at small RNA pathways in maize tassels

8 hours ago

Researchers at the University of Delaware and other institutions across the country have been awarded a four-year, $6.5 million National Science Foundation grant to analyze developmental events in maize anthers ...

How plant cell compartments change with cell growth

9 hours ago

A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of ...

Plants can 'switch off' virus DNA

9 hours ago

A team of virologists and plant geneticists at Wageningen UR has demonstrated that when tomato plants contain Ty-1 resistance to the important Tomato yellow leaf curl virus (TYLCV), parts of the virus DNA ...

User comments : 0