Brain structure assists in immune response (Video)

Jan 28, 2009

For the first time, a team of researchers at the University of Pennsylvania School of Veterinary Medicine have imaged in real time the body's immune response to a parasitic infection in the brain.

The findings provide unexpected insights into how immune cells are regulated in the brain and have implications for treatment of any inflammatory condition that affects the brain.

Toxoplasma, a common parasite of humans, is found in the brains of approximately 30 percent of the population. Yet, because the brain lacks its own lymphatic system for localized immune response and the blood brain barrier limits antibody entry, researchers have found it provides unique challenges for the immune system to control local infection. Therefore, little is known about the processes by which T cells access the central nervous system during toxoplasma infection or how the immune system keeps this parasite in check.

This video is not supported by your browser at this time.
To understand lymphocyte behavior in the brain, we used two-photon microscopy to visualize effector CD8+ Tcells during toxoplasmic encephalitis. These cells displayed multiple behaviors with two distinct populations of cells apparent: one with a constrained pattern of migration and one with a highly migratory subset. Credit: Chris Hunter, University of Pennsylvania

In this Penn study, researchers aimed to better understand how the immune system is able to control infection in the brain. Using recent advances in two-photon microscopy that allow the visualization of T-cell populations in the brain, Chris Hunter's lab focused on the visualization of effector CD8+ T cells during toxoplasmic encephalitis.

"We found, quite unexpectedly, that the movement of infiltrating T cells was closely associated with an infection-induced reticular system of fibers in the brain," lead author Emma Wilson said. "These structures were not present in normal brain tissue."

"This observation suggests that in the brain, specialized structures are induced by inflammation that guide migration of T cells in this immune-privileged environment and allow them to perform a search-and-destroy type of mission required to find abnormal cells or microbes with the brain," Hunter, professor and chair of the Department of Pathobiology at Penn Vet, said.

Source: University of Pennsylvania

Explore further: Eradication efforts unite to preserve fairy-wren population

add to favorites email to friend print save as pdf

Related Stories

Stem cells use 'first aid kits' to repair damage

Sep 18, 2014

Stem cells hold great promise as a means of repairing cells in conditions such as multiple sclerosis, stroke or injuries of the spinal cord because they have the ability to develop into almost any cell type. ...

Trapped: Cell-invading piece of virus captured in lab

Aug 06, 2014

In recent research published in the Journal of Biological Chemistry, Saint Louis University investigators report catching integrase, the part of retroviruses like HIV that is responsible for insertion of the ...

Recommended for you

World's first microbe 'zoo' opens in Amsterdam

5 hours ago

The world's first "interactive microbe zoo" opened in Amsterdam on Tuesday, shining new light on the tiny creatures that make up two-thirds of all living matter and are vital for our planet's future.

User comments : 0