Brain structure assists in immune response (Video)

Jan 28, 2009

For the first time, a team of researchers at the University of Pennsylvania School of Veterinary Medicine have imaged in real time the body's immune response to a parasitic infection in the brain.

The findings provide unexpected insights into how immune cells are regulated in the brain and have implications for treatment of any inflammatory condition that affects the brain.

Toxoplasma, a common parasite of humans, is found in the brains of approximately 30 percent of the population. Yet, because the brain lacks its own lymphatic system for localized immune response and the blood brain barrier limits antibody entry, researchers have found it provides unique challenges for the immune system to control local infection. Therefore, little is known about the processes by which T cells access the central nervous system during toxoplasma infection or how the immune system keeps this parasite in check.

This video is not supported by your browser at this time.
To understand lymphocyte behavior in the brain, we used two-photon microscopy to visualize effector CD8+ Tcells during toxoplasmic encephalitis. These cells displayed multiple behaviors with two distinct populations of cells apparent: one with a constrained pattern of migration and one with a highly migratory subset. Credit: Chris Hunter, University of Pennsylvania

In this Penn study, researchers aimed to better understand how the immune system is able to control infection in the brain. Using recent advances in two-photon microscopy that allow the visualization of T-cell populations in the brain, Chris Hunter's lab focused on the visualization of effector CD8+ T cells during toxoplasmic encephalitis.

"We found, quite unexpectedly, that the movement of infiltrating T cells was closely associated with an infection-induced reticular system of fibers in the brain," lead author Emma Wilson said. "These structures were not present in normal brain tissue."

"This observation suggests that in the brain, specialized structures are induced by inflammation that guide migration of T cells in this immune-privileged environment and allow them to perform a search-and-destroy type of mission required to find abnormal cells or microbes with the brain," Hunter, professor and chair of the Department of Pathobiology at Penn Vet, said.

Source: University of Pennsylvania

Explore further: Reptile Database surpasses 10,000 reptile species

add to favorites email to friend print save as pdf

Related Stories

Iliad founder says T-Mobile offer is 'real'

8 hours ago

French telecom upstart Iliad's founder said Friday that the company's offer for US-based T-Mobile is "real" and that he is open to working with partners on a deal.

Law changed to allow 'unlocking' cellphones

8 hours ago

President Barack Obama signed a bill into law on Friday making it legal once again to unlock a cellphone without permission from a wireless provider, so long as the service contract has expired.

Social network challenges end in tragedy

8 hours ago

Online challenges daring people to set themselves ablaze or douse themselves in ice water are racking up casualties and fueling wonder regarding idiocy in the Internet age.

Microsoft sues Samsung alleging contract breach

8 hours ago

Microsoft on Friday sued Samsung in federal court claiming the South Korean giant had breached a contract over cross-license technology used in the fiercely competitive smartphone market.

Recommended for you

Reptile Database surpasses 10,000 reptile species

13 hours ago

More than 10,000 reptile species have been recorded into the Reptile Database, a web-based catalogue of all living reptile species and classification, making the reptile species among the most diverse vertebrate ...

User comments : 0