Here's venom in your eye: Spitting cobras hit their mark

Jan 22, 2009

Spitting cobras have an exceptional ability to spray venom into eyes of potential attackers. A new study published in Physiological and Biochemical Zoology reveals how these snakes maximize their chances of hitting the target.

The name "spitting cobra" is a bit of a misnomer. Cobras don't actually "spit" venom, says the study's lead author Bruce Young, director of the Anatomical Laboratory in the Department of Physical Therapy at the University of Massachusetts, Lowell. Muscle contractions squeeze the cobra's venom gland, forcing venom to stream out of the snake's fangs. The muscles can produce enough pressure to spray venom up to six feet.

There are no points for distance, however. To be effective, venom must make contact with an attacker's eyes, where it causes severe pain and possibly blindness. Previous studies have found that cobras hit their targets with alarming frequency—nearly 100 percent accuracy from 60 centimeters.

Dr. Young and his colleagues, Melissa Boetig and Dr. Guido Westhoff, have found the secret to the cobra's success.

Cobra venom does not hit a victim in one spot. Instead, the venom lands in complex geometric patterns. This is no accident, according to the study. The patterns are actively produced by the cobra.

Dr. Young and his team used high-speed photography and electromyography (EMG) to detect contractions of head and neck muscles. They found that cobras engage their head and neck muscles a split second before spitting. The muscle activity rotates the head, and jerks it from side to side and back again, producing complex venom patterns.

"The venom-delivery system functions to propel the venom forward while the [head and neck] muscles produce rapid oscillations of the head that … disperse the venom, presumably maximizing the chance that a portion of the spat venom will contact the eye," the authors write.

The ability to actively disperse venom means that cobras don't need dead aim on the eye. They just need to be in the ballpark.

The paper appears in an issue of Physiological and Biochemical Zoology on the focused topic "Functional Consequences of Extreme Adaptations." PBZ is edited by Dr. James Hicks of the University of California, Irvine and published by the University of Chicago Press.

Source: University of Chicago

Explore further: Free the seed: OSSI nurtures growing plants without patent barriers

add to favorites email to friend print save as pdf

Related Stories

Health care site flagged in Heartbleed review

1 minute ago

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...

Airbnb rental site raises $450 mn

18 minutes ago

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.

Four questions about missing Malaysian plane answered

19 minutes ago

Travelers at Asian airports have asked questions about the March 8 disappearance of Malaysia Airlines Flight 370 while en route from Kuala Lumpur to Beijing. Here are some of them, followed by answers.

Recommended for you

Plants with dormant seeds give rise to more species

Apr 18, 2014

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Researchers successfully clone adult human stem cells

Apr 18, 2014

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

User comments : 0

More news stories

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...