Sequence matters in droughts and floods

Jan 08, 2009

When extremes of drought and flood come in rapid succession, the extent of damage to vegetation may depend in part on the sequence of those events, according to a new study published in The American Naturalist.

The study, which focused on tree species common to the Everglades in Florida, found that seedlings maintained higher growth rates and were less likely to die when subjected to drought first then flood, rather than vice versa. The findings could have significant implications for predicting how vegetation responds to climate extremes—especially amid forecasts of increasingly severe droughts and floods associated with climate change, say authors ShiLi Miao (South Florida Water Management), Chris B. Zou and David D. Breshears (both University of Arizona).

According to Dr. Miao, most previous studies on how vegetation responds to hydrological events have been based largely on responses to a single hydrological condition. Few studies have investigated multiple events in succession.

"Our research suggests that you can't really predict how the plants will respond to combinations of drought and flood by studies that look just at a single drought or a single flood," Dr. Miao said. "We found that plants respond very differently depending on the sequence of flood and drought."

In a greenhouse, Dr. Miao's team subjected seedlings to sequences of conditions that simulated drought and flood, with each phase lasting four months.

The three species chosen for the experiments have varying tolerances to hydrological events. The pond-apple tree (annona glabra) tends to be flood tolerant. The gumbo-limbo (bursera simaruba, also known as West Indian birch) tends to be drought tolerant. The red maple (acer rabrum, also known as swamp maple) has intermediate tolerances to drought and flood.

Each species tested showed higher mortality and lower growth rate when flood was first in the sequence, compared to when drought came first.

The study has implications for the restoration and management of the Everglades and other aquatic systems, Dr. Miao says. The results suggest that "the challenge ahead includes evaluating different sequences of extreme events."

Dr. Miao and her team plan to conduct additional research on various wetland plants related to their nutrient removal function under extreme hydrological conditions.

Source: University of Chicago

Explore further: Tracking fish easier, quicker, safer with new injectable device

add to favorites email to friend print save as pdf

Related Stories

UM researcher helps NASA get the dirt on soil moisture

Jan 15, 2015

During the early-morning hours on Tuesday, Jan. 29, NASA will launch a satellite that will peer into the topmost layer of Earth's soils to measure the hidden waters that influence our ecosystems weather and ...

Satellite shows return of the Pineapple Express

Dec 12, 2014

The ''Pineapple Express'' happens when warm air and lots of moisture are transported from the Central Pacific, near Hawaii, to the Eastern Pacific Ocean. An animation of satellite imagery from NOAA's GOES-West ...

Climate march to set tone at Lima talks

Dec 10, 2014

Green groups hoped for a big turnout at a protest in Lima Wednesday aimed at heaping pressure on ministers haggling over a post-2020 deal to curb carbon emissions.

Recommended for you

Who's going to win? The answer could change by the hour

1 hour ago

The outcome of that big sporting event you just can't wait to watch may depend on how the timing of the match aligns (or doesn't) with the internal biological clocks of the athletes on the teams, according ...

Growing functioning brain tissue in 3D

1 hour ago

Researchers at the RIKEN Center for Developmental Biology in Japan have succeeded in inducing human embryonic stem cells to self-organize into a three-dimensional structure similar to the cerebellum, providing ...

Understanding cellular ageing

1 hour ago

Researchers at the BBSRC-supported Babraham Institute have mapped the physical structure of the nuclear landscape in unprecedented detail to understand changes in genomic interactions occurring in cell senescence and ageing. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.