Sequence matters in droughts and floods

Jan 08, 2009

When extremes of drought and flood come in rapid succession, the extent of damage to vegetation may depend in part on the sequence of those events, according to a new study published in The American Naturalist.

The study, which focused on tree species common to the Everglades in Florida, found that seedlings maintained higher growth rates and were less likely to die when subjected to drought first then flood, rather than vice versa. The findings could have significant implications for predicting how vegetation responds to climate extremes—especially amid forecasts of increasingly severe droughts and floods associated with climate change, say authors ShiLi Miao (South Florida Water Management), Chris B. Zou and David D. Breshears (both University of Arizona).

According to Dr. Miao, most previous studies on how vegetation responds to hydrological events have been based largely on responses to a single hydrological condition. Few studies have investigated multiple events in succession.

"Our research suggests that you can't really predict how the plants will respond to combinations of drought and flood by studies that look just at a single drought or a single flood," Dr. Miao said. "We found that plants respond very differently depending on the sequence of flood and drought."

In a greenhouse, Dr. Miao's team subjected seedlings to sequences of conditions that simulated drought and flood, with each phase lasting four months.

The three species chosen for the experiments have varying tolerances to hydrological events. The pond-apple tree (annona glabra) tends to be flood tolerant. The gumbo-limbo (bursera simaruba, also known as West Indian birch) tends to be drought tolerant. The red maple (acer rabrum, also known as swamp maple) has intermediate tolerances to drought and flood.

Each species tested showed higher mortality and lower growth rate when flood was first in the sequence, compared to when drought came first.

The study has implications for the restoration and management of the Everglades and other aquatic systems, Dr. Miao says. The results suggest that "the challenge ahead includes evaluating different sequences of extreme events."

Dr. Miao and her team plan to conduct additional research on various wetland plants related to their nutrient removal function under extreme hydrological conditions.

Source: University of Chicago

Explore further: Breakthrough study discovers six changing faces of 'global killer' bacteria

add to favorites email to friend print save as pdf

Related Stories

Climate change report identifies 'the most vulnerable'

Sep 22, 2014

Extreme weather events leave populations with not enough food both in the short- and the long-term. A new report by the Environmental Change Institute (ECI) at the School of Geography and the Environment ...

Projections for climate change in Vermont

Sep 15, 2014

Here's your northern Vermont forecast for the rest of this century: Annual precipitation will increase by between a third and half an inch per decade, while average temperatures will rise some five degrees ...

US cities prep for warm climate without saying so

Sep 08, 2014

Climate change remains a political minefield across the U.S., despite the strong scientific consensus that it's happening, so some local leaders have hit upon a way of preparing for the potentially severe consequences without ...

Weathering the storm

Sep 03, 2014

Old-timers sharing childhood stories about growing up in Maine sometimes recount hiking 10 miles uphill in 3 feet of snow to get to school—and home.

Rainfall monitoring with mobile phones

Sep 02, 2014

Agriculture, water resource management, drought and flood warnings, etc.: rainfall monitoring is vital in many areas. But the observation networks remain insufficient. This is not the case for antennas for ...

Underwater grass comeback bodes well for Chesapeake Bay

Sep 02, 2014

The Susquehanna Flats, a large bed of underwater grasses near the mouth of the Susquehanna River, virtually disappeared from the upper Chesapeake Bay after Tropical Storm Agnes more than 40 years ago. However, ...

Recommended for you

The remarkable simplicity of complexity

32 minutes ago

From the fractal patterns of snowflakes to cellular lifeforms, our universe is full of complex phenomena – but how does this complexity arise?

Five ways to stop the world's wildlife vanishing

1 hour ago

Full marks to colleagues at the World Wildlife Fund and the Zoological Society of London for the Living Planet Report 2014 and its headline message which one hopes ought to shock the world out of its com ...

User comments : 0