Spookfish uses mirrors for eyes

Jan 07, 2009
The red eyes are the spookfish's tubular eyes that point upwards, the black bumps on the side of its head are the diverticular eyes that point downwards so do not reflect the flashlight. Credit: Dr. Tammy Frank, Habor Branch Oceanographic Institution

A remarkable new discovery shows the four-eyed spookfish to be the first vertebrate ever found to use mirrors, rather than lenses, to focus light in its eyes.

Professor Julian Partridge from the University of Bristol, said: "In nearly 500 million years of vertebrate evolution, and many thousands of vertebrate species living and dead, this is the only one known to have solved the fundamental optical problem faced by all eyes - how to make an image - using a mirror."

While the spook fish looks like it has four eyes, in fact it only has two, each of which is split into two connected parts. One half points upwards, giving the spookfish a view of the ocean - and potential food - above. The other half, which looks like a bump on the side of the fish's head, points downwards into the abyss below. These 'diverticular' eyes are unique among all vertebrates in that they use a mirror to make the image.

Very little light penetrates beneath about 1000m of water and like many other deep-sea fish the spookfish is adapted to make the most of what little light there is. At these depths it is flashes of bioluminescent light from other animals that the spookfish are largely looking for. The diverticular eyes image these flashes, warning the spookfish of other animals that are active, and otherwise unseen, below its vulnerable belly.

Although the spookfish was first discovered 120 years ago, no one had discovered its reflective eyes until now because a live animal had never been caught. When Professor Hans-Joachim Wagner from Tuebingen University caught a live specimen off the Pacific island of Tonga, members of his research team used flash photography to confirm the fish's upward and downward gazes.

Photographs taken by Dr Tammy Frank looking down on the live fish produced eye-shine in the main tubular eyes that point upwards, but not in the diverticular eyes that point downward. Instead, these reflect light when seen from below.

It was when looking at sections of the eye that had been prepared for microscopy that Professor Partridge realised that the diverticular mirrors where something exciting. The mirror uses tiny plates, probably of guanine crystals, arranged into a multi-layer stack. This is not unique in the animal kingdom (it's why silvery fish are silvery) but the arrangement and orientation of the guanine crystals is precisely controlled such that they direct the light to a focus. Partridge's computer simulation showed that the precise orientation of the plates within the mirror's curved surface is perfect for focusing reflected light onto the fish's retina.

The use of a single mirror has a distinct advantage over a lens in its potential to produce bright, high-contrast images. That must give the fish a great advantage in the deep sea, where the ability to spot even the dimmest and briefest of lights can mean the difference between eating and being eaten.

The paper: A Novel Vertebrate Eye Using Both Refractive and Reflective Optics, by Hans-Joachim Wagner, Ron H. Douglas, Tamara M. Frank, Nicholas W. Roberts and Julian C. Partridge. Current Biology 19, 1-7, January 27, 2009. DOI 10.1016/j.cub.2008.11.061

Source: University of Bristol

Explore further: Scottish zoo: 'Bad news' for pregnant giant panda

add to favorites email to friend print save as pdf

Related Stories

Histones and the mystery of cell proliferation

Aug 19, 2014

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

Bats use polarized light to navigate

Jul 22, 2014

Scientists have discovered that greater mouse-eared bats use polarisation patterns in the sky to navigate – the first mammal that's known to do this.

Recommended for you

DNA may have had humble beginnings as nutrient carrier

17 hours ago

New research intriguingly suggests that DNA, the genetic information carrier for humans and other complex life, might have had a rather humbler origin. In some microbes, a study shows, DNA pulls double duty ...

Central biobank for drug research

17 hours ago

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

No-take marine reserves a no-win for seahorses

18 hours ago

A UTS study on how seahorses are faring in no-take marine protected areas (MPAs) in NSW has revealed that where finishing is prohibited, seahorses aren't doing as well.

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

gopher65
not rated yet Jan 07, 2009
That is made of awesome.
el_gramador
not rated yet Jan 08, 2009
It is also made of grammar error.

"It was when looking at sections of the eye that had been prepared for microscopy that Professor Partridge realised that the diverticular mirrors where something exciting."

where should have been were.

I know these guys aren't scientists but at the very least they should be able to spell and make coherent sentences.
gopher65
not rated yet Jan 13, 2009
I meant the fish of course, not the article;).