Chemist receives NIH funding to unravel tricks of neuronal wiring

Dec 29, 2008

Joshua Maurer, Ph.D., assistant professor of chemistry in Arts & Sciences, has received a four-year, $1,216,000 grant from the National Institute of Mental Health for research titled "Unraveling Development: New Materials for Understanding Neuronal Wiring."

Maurer's long term objective is to develop methodology that allows the study of a variety of neuronal wiring processes. He is starting by unscrambling a phenomenon known as midline crossing using zebrafish. During development, neurons from the right eye cross the midline of the brain to make a connection in the left hemisphere.

"Our goal is to build a substrate that looks like what a growing neuron would encounter in the brain as it goes from the eye to where it has to make its final connection in order to do a feedback response," Maurer explained. "We want to replicate the interactions (in the brain) on a glass surface by laying down a series of molecules with nanoscopic control. Then we can watch in real time, with a microscope, how a neuron is guided through this pattern."

Their findings could help explain more about the fundamentals of nerve damage and enable better nerve repair some day.

They are developing strategies that give "robust, stable" surfaces that can be studied for weeks. Current techniques give surfaces with limited stability, around 5 days. "We have recently published new patterning techniques that allow us to build protein patterns directly on glass and are just starting to meet our goals of building complex systems," Maurer said.

Traditionally, to elucidate a protein's role in a known pathway, scientists make a "knockout" animal by inactivating the gene that codes for the protein and observing the resulting effect in the animal. However, this technique cannot be used to study proteins involved in development because these proteins can have multiple functions.

"If you knock out a developmental protein, there is a potential that you affect some upstream event so you never do the event you are interested in," Maurer said.

Maurer's neuronal "road map" overcomes this problem by isolating the guidance system from the zebrafish's neurobiological milieu. By watching the neuron grow in real time, he will be able to determine exactly which proteins tell the neuron to turn left, right, or stop.

Knowledge gained in these studies could be applied to reconnecting severed nerves in humans. "This eye crossing event happens in every organism with two eyes. Last time I checked that was all of them. I don't see any cyclopses wandering around," Maurer said.

Source: Washington University in St. Louis

Explore further: Team discovers evolutionary mechanism that allows bacteria to resist antibiotics

add to favorites email to friend print save as pdf

Related Stories

Drought sees Rio's main hydro plant turned off

2 hours ago

A major Rio hydroelectric power plant was switched off after water levels slipped below an operational minimum following severe drought, Brazil's national grid told AFP on Thursday.

Recommended for you

Chemists find a way to unboil eggs

52 minutes ago

UC Irvine and Australian chemists have figured out how to unboil egg whites – an innovation that could dramatically reduce costs for cancer treatments, food production and other segments of the $160 billion ...

'Predicted' zeolites may fuel efficient processes

Jan 23, 2015

(Phys.org)—Scientists at Rice University and the University of Minnesota have identified synthetic materials that may purify ethanol more efficiently and greatly improve the separation of long-chain hydrocarbons ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.