Technique provides snapshot of all genes in human genome

Dec 17, 2008 By Krishna Ramanujan
This graphic shows polymerases on one strand of DNA (red) pausing during the transcription process, but some polymerases start moving again, travel through and transcribe the gene. Polymerases on the opposite strand (blue) travel in the opposite direction and also pause but do not travel significantly farther. Image: Lis Lab

(PhysOrg.com) -- Like Silly Putty lifting an imprint of the Sunday comics off a newspaper, complex enzymes called RNA polymerases lift information off DNA strands. The polymerases then transcribe those genetic instructions onto RNA for making proteins that cells use for basic functions.

In the Dec. 19 issue of Science, Cornell researchers report on a new technique that takes a snapshot of all the locations on the human genome where RNA polymerases actively transcribe genes. The method provides a new and highly sensitive way to pinpoint all the active and silent genes in the human genome.

The researchers also report on a new mechanism: Scientists always thought that RNA polymerases read DNA in one direction, by starting at a bit of DNA at the front of a gene -- the so-called promoter -- and moving to the end of the gene. But the new polymerase maps reveal that polymerases also appear on the other side of the promoter and run in the opposite direction.

"We always thought that polymerases followed one direction, but now we have polymerases going both ways," said John Lis, the paper's senior author and the Barbara McClintock Professor of Molecular Biology and Genetics at Cornell.

The polymerases going forward follow through to the end of the gene and transcribe the information for making proteins, but for reasons yet unknown, polymerases going in the opposite direction travel only a short distance and then stop. Researchers hypothesize that these opposite-facing polymerases could be holding open a segment of DNA for transcription.

The researchers also observed that the transcription process pauses because polymerases accumulate near the promoter before moving to the end of the gene. The pause may have a structural function, the researchers suggest, to hold open the site for other polymerases to enter. The pause seems to occur at genes that respond to signals (called regulated genes) and could allow time to prepare the gene for a rapid and coordinated response to a signal. Or, a pause may be necessary to make sure that all the necessary components are in place for proper transcription.

"A pause can likely be serving a different role at different genes," said Josh Waterfall, a postdoctoral researcher in Lis' lab and a co-author of the paper. "It's only in the last few years that experiments suggest these pauses are a common pattern on a lot of genes." The new study confirms that the high frequency of locations where polymerases build up, as seen in other studies, are sites where transcription pauses.

Leighton Core, a graduate student in Lis' lab and the paper's lead author, developed the new mapping technique by modifying an older technique. "The assay is actually around 30 years old, but it traditionally only measured the polymerases locations at small discrete units," he said. "But we were able to adapt the assay to measure actively engaged polymerases across the human genome."

This paper is one of four simultaneous papers appearing in Science that discuss these divergent polymerases for the first time. The papers have been online at Science Express since Dec. 4.

Provided by Cornell University

Explore further: Woolly mammoth genome sequencer at UWA

add to favorites email to friend print save as pdf

Related Stories

Scientists fold RNA origami from a single strand

Aug 14, 2014

RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, many complicated shapes can be fabricated by this technique. Unlike existing methods for folding DNA ...

Nucleoids and the structure of life

Jul 07, 2014

(Phys.org) —In the brave new world of three-parent embryos several inherited mitochondrial diseases can potentially be solved. One slightly dubious argument used by its champions to assuage equally dubious ...

DNA based diagnostics 2.0

Jul 01, 2014

The latest generation of DNA sequencers allows all the genes of a plant, as well as any pathogens present, to be charted literally within a few days. "This provides unprecedented opportunities for the diagnosis ...

Repairing DNA lesions

Jun 25, 2014

Repair of DNA lesions is essential for mammalian development. Notably, DNA lesions in cells caused by genotoxic agents results in arrest of cell cycle and ultimately in cell death. In response, DNA polymerase ...

DNA gridlock: Cells undo glitches to prevent mutations

Jun 03, 2013

Roughly six feet of DNA are packed into every human cell, so it is not surprising that our genetic material occasionally folds into odd shapes such as hairpins, crosses and clover leafs. But these structures ...

Recommended for you

Woolly mammoth genome sequencer at UWA

15 minutes ago

How can a giant woolly mammoth which lived at least 200,000 years ago help to save the Tasmanian Devil from extinction? The answer lies in DNA, the carrier of genetic information.

Big science from small insects

48 minutes ago

Anniversaries are often a time to look back. But after taking stock of the past, it can be just as important to look to the future.

Battling superbugs with gene-editing system

18 hours ago

In recent years, new strains of bacteria have emerged that resist even the most powerful antibiotics. Each year, these superbugs, including drug-resistant forms of tuberculosis and staphylococcus, infect ...

Dwindling wind may tip predator-prey balance

Sep 19, 2014

Bent and tossed by the wind, a field of soybean plants presents a challenge for an Asian lady beetle on the hunt for aphids. But what if the air—and the soybeans—were still?

User comments : 0