Root system architecture arises from coupling cell shape to auxin transport

Dec 16, 2008

Plants come in all shapes and sizes, from grand Redwood trees to the common Snowdrop. Although we cannot see them, under the ground plants rely on a complex network of roots. What determines the pattern of root growth has been a mystery, but a new paper published this week in PLoS Biology shows that the shape of the existing root can determine how further roots branch from it – because shape determines hormone concentration. The work also suggests that the root-patterning system shares a deep evolutionary relationship to the patterning system of plant shoots, something that had not been realized previously.

The paper, by Laskowski, Grieneisen, Hofhuis, et al, explores the architecture of the root system of the model organism Arabidopsis thaliana, a plant with the unusual common name "mouse-ear cress." The authors show that the curve of the root is key in provoking new growth. They used computational modeling of the transport of a well-known plant hormone, auxin, and by following the diffusion of this hormone they reveal that its accumulation leads to the specification of new growth regions in the root structure.

In particular, the initial trigger of this accumulation is a difference in cell size between the inner and outer sides of a root curve, which is then amplified by feedback responses from the hormone transport system.

Surprisingly, this new model on root architecture is reminiscent of the way leaves develop around growing tips in plant – a key feature of shoot architecture. This is exciting because it suggests that a deep connection exists between both root and shoot architectures – which have hitherto been viewed upon as being entirely separate. The work further shows that a new kind of biology, involving complete mixing of experiments and computer modeling, is a very powerful tool in probing organismal architecture.

Citation: Laskowski M, Grieneisen VA, Hofhuis H, ten Hove CA , Hogeweg P, et al. (2008) Root system architecture from coupling cell shape to auxin transport. PLoS Biol 6(12): e307. doi:10.1371/journal.pbio.0060307
biology.plosjournals.org/perls… journal.pbio.0060307

Source: Public Library of Science

Explore further: Dwindling wind may tip predator-prey balance

add to favorites email to friend print save as pdf

Related Stories

PLANTOID: Building a robot to mimic plants

May 14, 2014

Many of us probably picture robots as roughly human-shaped - as seen in countless science fiction films - or perhaps as little more than mobile computers. But one EU project is taking inspiration from the ...

New tool gets to the root of the matter

Feb 20, 2013

A U.S. Department of Agriculture (USDA) scientist and his colleague at Cornell University have developed a new tool for studying how roots take shape in the soil.

Recommended for you

Dwindling wind may tip predator-prey balance

Sep 19, 2014

Bent and tossed by the wind, a field of soybean plants presents a challenge for an Asian lady beetle on the hunt for aphids. But what if the air—and the soybeans—were still?

Environmental pollutants make worms susceptible to cold

Sep 19, 2014

Some pollutants are more harmful in a cold climate than in a hot, because they affect the temperature sensitivity of certain organisms. Now researchers from Danish universities have demonstrated how this ...

Research helps steer mites from bees

Sep 19, 2014

A Simon Fraser University chemistry professor has found a way to sway mites from their damaging effects on bees that care and feed the all-important queen bee.

User comments : 0