A new approach improves prioritization of disease-associated SNPs

Dec 05, 2008

The more often a gene is differentially expressed, the more likely it is to contain disease-associated DNA variants. Research published today in BioMed Central's open access journal Genome Biology shows how a list of SNPs in genes that are repeatedly implicated across many publicly-available gene expression microarray experiments (so-called, 'fitSNPs'), based on differential expression rates, can be used to successfully prioritize candidate genes for further research.

Atul Butte from Stanford University School of Medicine, USA, led a team of researchers who developed the new way to prioritize candidate SNPs from genome-wide association studies (GWAS). He said, "fitSNPs successfully distinguished true disease genes from false positives in genome-wide association studies looking at multiple diseases, and can serve as a powerful and convenient tool to prioritize disease genes from this type of study."

The hypothesis that there is an association between gene expression and disease-associated variants has never before been demonstrated with such clarity and at this global scale. The authors have robustly demonstrated that the likelihood of having variants associated with disease was 12 times higher among differentially expressed genes compared to constantly expressed genes. According to Butte, "As a case study, we looked at type 1 diabetes mellitus. We derived a list of fitSNPs to analyze the top seven loci of the Wellcome Trust Case Control Consortium type 1 diabetes mellitus (T1DM) genome-wide association studies. We then rediscovered all T1DM genes, and predicted a novel gene for a previously unexplained locus."

There are many candidate gene and SNP prioritization methods, and while the authors acknowledge that no single method is perfect, they suggest that using fitSNPs in a complementary fashion with other prioritization methods will significantly lower experimental costs.

Citation: FitSNPs: Highly differentially expressed genes are more likely to have variants associated with disease, Rong Chen, Alex A Morgan, Joel Dudley, Tarangini Deshpande, Li Li, Keiichi Kodama, Annie P Chiang and Atul J Butte, Genome Biology (in press)
genomebiology.com/

Source: BioMed Central

Explore further: Top Japan lab dismisses ground-breaking stem cell study

add to favorites email to friend print save as pdf

Related Stories

Study discovers a way to control internal clocks

9 hours ago

Researchers hypothesize that targeting components of the mammalian clock with small molecules like REV-ERB drugs may lead to new treatments for sleep disorders and anxiety disorders. It also is possible that ...

Barren deserts can host complex ecosystems in their soils

Dec 22, 2014

"Biological soil crusts" don't look like much. In fact, people often trample right over these dark, or green-tinted, sometimes raised patches in the desert soil. But these scruffy stretches can house delicate ...

Big data and the science of the Christmas tree

Dec 18, 2014

Often called the "Cadillac of Christmas trees," the Fraser Fir has everything a good Christmas tree should have: an even triangular shape, a sweet piney fragrance, and soft needles that (mostly) stay attached ...

Recommended for you

Top Japan lab dismisses ground-breaking stem cell study

2 minutes ago

Japan's top research institute on Friday hammered the final nail in the coffin of what was once billed as a ground-breaking stem cell study, dismissing it as flawed and saying the work could have been fabricated.

Research sheds light on what causes cells to divide

Dec 24, 2014

When a rapidly-growing cell divides into two smaller cells, what triggers the split? Is it the size the growing cell eventually reaches? Or is the real trigger the time period over which the cell keeps growing ...

Locking mechanism found for 'scissors' that cut DNA

Dec 24, 2014

Researchers at Johns Hopkins have discovered what keeps an enzyme from becoming overzealous in its clipping of DNA. Since controlled clipping is required for the production of specialized immune system proteins, ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet Dec 05, 2008
I assume "gene expression" is by electrons with specific speed and spin. More specific understanding is needed!
rong
not rated yet Dec 10, 2008
Gene expression means the expression levels of genes in the human body, which controls all physilogical property of our body, such as disease. We already have the expression levels of all genes in human for more than 300 diseases in the public domain. This article makes use of the data set and predicted disease-causing genes for 597 unknown diseases.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.