Clues about controlling cholesterol rise from yeast studies

Dec 02, 2008

Having discovered how a lowly, single-celled fungus regulates its version of cholesterol, Johns Hopkins researchers are gaining new insight about the target and action of cholesterol-lowering drugs taken daily by millions of people to stave off heart attacks and strokes. Their work appears in the December issue of Cell Metabolism.

In humans, statin drugs inhibit an enzyme, HMG-CoA reductase, to lower blood cholesterol. What's not as well understood are the multiple layers of control for the enzyme, especially the regulatory protein Insig.

Because components of the cholesterol-regulatory system have been conserved across 400 million years of evolution, a yeast called fission yeast is a good model for delving fast and deep into molecular details of how mammalian cells regulate HMG-CoA reductase.

The Hopkins team found that in these yeast, so named because they divide in the middle, Insig also regulates HMG-CoA reductase but does it differently. In mammals, Insig degrades this enzyme — essentially destroying it — while in fission yeast, Insig inactivates the enzyme simply by promoting the attachment of a phosphate.

"This is a surprising fundamental difference," says Peter J. Espenshade, a physiologist in the Department of Cell Biology and member of the Center for Metabolism and Obesity Research at the Johns Hopkins University School of Medicine.

Despite a decidedly bad rep, cholesterol has good purpose — in the right amounts and in the right places — as the raw material for the production of steroid hormones and bile acids. Cholesterol also sits in the membranes of cells, maintaining the barrier between them and their environment. But the thing that makes it most useful in cell function — its absolute inability to dissolve in water — also makes it lethal. When cholesterol accumulates in the wrong place — say, within the wall of an artery — it leads to plaque formation and atherosclerosis.

The Johns Hopkins team's seek-and-find mission for new parts of the molecular machine that regulates the manufacture of cholesterol builds on Nobel-prize winning research by Michael S. Brown and Joseph L. Goldstein of the Department of Molecular Genetics, University of Texas - Southwestern Medical School, who discovered that cells of the human body have receptors on their surfaces that trap and absorb bloodstream particles containing cholesterol.

Using fission yeast, the Johns Hopkins scientists identified the protein Insig as an integral part of the sensor system in cells that measures cholesterol levels. When all is well with cells, they happily go about their business of manufacturing cholesterol in just the right amounts, as determined by their Insig-regulated sensors, Espenshade says.

As in humans, Insig in yeast limits cholesterol production by inactivating the enzyme HMG-CoA reductase. How the yeast stopped synthesizing cholesterol was what surprised the scientists, however.

Stressed fission yeast activated a protein called MAPK which, partnering with the protein Insig, attaches a phosphate onto the enzyme HMG-CoA reductase by a process known as phosphorylation and shuts down cholesterol manufacture. These findings explain how a cell can change cholesterol production in response to a stressful environment.

"In this study, we not only learned something new about how Insig works and cholesterol biology, but we also found a rare example of a MAPK controlling a biosynthetic enzyme," Espenshade says.

By studying Insig control of HMG-CoA reductase in yeast, the researchers hope to inform improvements to the efficacy of statin and other cholesterol-lowering therapies.

Source: Johns Hopkins Medical Institutions

Explore further: New study reveals widespread risk of infectious diseases to wild bees

add to favorites email to friend print save as pdf

Related Stories

Study shows troubling rise in use of animals in experiments

7 hours ago

Despite industry claims of reduced animal use as well as federal laws and policies aimed at reducing the use of animals, the number of animals used in leading U.S. laboratories increased a staggering 73 percent from 1997 ...

NY surveying banks on cyber security defenses

9 hours ago

(AP)—New York financial regulators are considering tougher cyber security requirements for banks to mandate more complex computer sign-ins and certifications from the contractors of their cyber defenses, the state's top ...

Life-saving train design is rarely used

10 hours ago

(AP)—Nearly a decade ago, the U.S. secretary of transportation stood at the site of a horrendous commuter train crash near downtown Los Angeles and called for the adoption of a new train car design that ...

Climate change may flatten famed surfing waves

10 hours ago

On a summer day in 1885, three Hawaiian princes surfed at the mouth of the San Lorenzo River on crudely constructed boards made from coastal redwoods, bringing the sport to the North American mainland.

Recommended for you

Deadly frog fungus dates back to 1880s, studies find

1 hour ago

A deadly fungus responsible for the extinction of more than 200 amphibian species worldwide has coexisted harmlessly with animals in Illinois and Korea for more than a century, a pair of studies have found.

Wild yaks: Shaggy barometers of climate change

3 hours ago

A new study led by WCS (Wildlife Conservation Society), University of Montana, Qinghai Forestry Bureau, Keke Xili National Nature Reserve, and other groups finds that climate change and past hunting in the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.