Tool helps identify gene function in soybeans

Dec 01, 2008

In the race for bioengineered crops, sequencing the genome could be considered the first leg in a multi-leg relay. Once the sequence is complete, the baton is passed forward to researchers to identify genes' functions. A draft sequence of the soybean genome is now available, and the complete genome will be available soon. Taking the next step in a new study, University of Missouri Interdisciplinary Plant Group researchers have demonstrated the applicability of a genomic tool for identifying gene function in soybeans. Understanding gene function in soybeans will ultimately benefit crop performance.

The new genomic tool uses transposons, which are fragments of DNA that can "hop around" the genome. When these fragments move, they often land within an existing gene sequence, causing a mutation, or disruption, in that gene's function. By "tagging" transposons, scientists have found that they can screen plants for visible mutations in important agronomic traits, such as seed composition or root growth.

By "tracing" a tagged transposon, scientists can easily identify the exact gene where any single mutation occurs. This technique has been successfully used in a number of plants, including maize and the model plant Arabidopsis thaliana. In the study, IPG scientists demonstrated the feasibility of this technique in the soybean.

"Studying gene function in soybeans presents special challenges because the plant is tetraploid, meaning it has extra copies of most genes," said IPG member Gary Stacey, lead author of the report and an investigator in the MU Christopher S. Bond Life Sciences Center. "Nevertheless, we were able to create a number of plant variants containing different mutations and to identify a specific gene associated with a particular mutation, specifically male sterility."

Several of the scientists involved in the study were part of a team that was recently awarded a three-year, $2.5 million grant from the National Science Foundation to test the feasibility of additional functional genomic techniques in soybean.

"Our goal is to create a repository that will be a resource for the soybean community to study gene function and that, in the long run, will aid in translating genomics data into information that will ultimately benefit crop performance," Stacey said.

Source: University of Missouri-Columbia

Explore further: Dwindling wind may tip predator-prey balance

add to favorites email to friend print save as pdf

Related Stories

Stem cells use 'first aid kits' to repair damage

Sep 18, 2014

Stem cells hold great promise as a means of repairing cells in conditions such as multiple sclerosis, stroke or injuries of the spinal cord because they have the ability to develop into almost any cell type. ...

Recommended for you

Dwindling wind may tip predator-prey balance

Sep 19, 2014

Bent and tossed by the wind, a field of soybean plants presents a challenge for an Asian lady beetle on the hunt for aphids. But what if the air—and the soybeans—were still?

Environmental pollutants make worms susceptible to cold

Sep 19, 2014

Some pollutants are more harmful in a cold climate than in a hot, because they affect the temperature sensitivity of certain organisms. Now researchers from Danish universities have demonstrated how this ...

Research helps steer mites from bees

Sep 19, 2014

A Simon Fraser University chemistry professor has found a way to sway mites from their damaging effects on bees that care and feed the all-important queen bee.

User comments : 0