A novel target for therapeutics against Staph infection

Nov 28, 2008

Researchers at the Texas A&M Health Science Center Institute of Biosciences and Technology, and the University of Edinburgh have uncovered how a bacterial pathogen interacts with the blood coagulation protein fibrinogen to cause methicillin-resistant Staphylococcus aureus (MRSA) infections, a finding that could aid in developing therapeutics against the potentially deadly disease. Their work appears November 28 in the open-access journal PLoS Pathogens.

Once occurring more commonly in healthcare facilities, but now affecting segments of the general population, MRSA is a bacterial pathogen responsible for a range of diseases from mild skin infection to life-threatening sepsis. Even with antibiotics, these infections can still be fatal.

Senior author Magnus Höök, Ph.D. and his colleagues carried out biochemical and structural studies to determine the binding mechanism of clumping factor A (ClfA), a surface protein that plays an important role in the pathogenesis of S. aureus. The group found that ClfA binds to the blood-clotting protein fibrinogen (Fg) at a site that is also responsible for inducing platelet activation and thrombosis (clot inside a blood vessel).

The results show significant structural differences in how staphylococcal and platelet receptor proteins recognize fibrinogen. By exploiting this difference in recognition, the researchers show that agents could be designed that inhibit the ClfA–Fg interaction but do not interfere with the interaction of Fg with the platelet integrin, therefore avoiding unwanted side effects on the circulatory system.

Citation: Ganesh VK, Rivera JJ, Smeds E, Ko Y-P, Bowden MG, et al. (2008) A Structural Model of the Staphylococcus aureus ClfA–Fibrinogen Interaction Opens New Avenues for the Design of Anti-Staphylococcal Therapeutics. PLoS Pathog 4(11): e1000226. doi:10.1371/journal.ppat.1000226
dx.plos.org/10.1371/journal.ppat.1000226

Source: Public Library of Science

Explore further: Emerging disease could wipe out American, European salamanders

add to favorites email to friend print save as pdf

Related Stories

Faster, safer method for producing stem cells

Dec 04, 2012

A new method for generating stem cells from mature cells promises to boost stem cell production in the laboratory, helping to remove a barrier to regenerative medicine therapies that would replace damaged ...

Drug mitigates toxic effects of radiation in mice

Jun 23, 2010

While radiation has therapeutic uses, too much radiation is damaging to cells. The most important acute side effect of radiation poisoning is damage to the bone marrow. The bone marrow produces all the normal blood cells, ...

New way of inhibiting cell cycle shows promise

Oct 22, 2008

Geneva, Switzerland: A new anti-cancer compound that works by blocking a part of the cell's machinery that is crucial for cell division has shown promising results in a phase I clinical trial in patients who have failed to ...

Recommended for you

Literature searches benefit from location tagging

just added

Agricultural Research Service ecologist Jason Karl is creating new options for helping researchers to conduct literature searches that go beyond using traditional search terms such as keywords or authors. ...

Himalayan Viagra fuels caterpillar fungus gold rush

13 hours ago

Overwhelmed by speculators trying to cash-in on a prized medicinal fungus known as Himalayan Viagra, two isolated Tibetan communities have managed to do at the local level what world leaders often fail to ...

Science casts light on sex in the orchard

16 hours ago

Persimmons are among the small club of plants with separate sexes—individual trees are either male or female. Now scientists at the University of California, Davis, and Kyoto University in Japan have discovered ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.