A novel target for therapeutics against Staph infection

Nov 28, 2008

Researchers at the Texas A&M Health Science Center Institute of Biosciences and Technology, and the University of Edinburgh have uncovered how a bacterial pathogen interacts with the blood coagulation protein fibrinogen to cause methicillin-resistant Staphylococcus aureus (MRSA) infections, a finding that could aid in developing therapeutics against the potentially deadly disease. Their work appears November 28 in the open-access journal PLoS Pathogens.

Once occurring more commonly in healthcare facilities, but now affecting segments of the general population, MRSA is a bacterial pathogen responsible for a range of diseases from mild skin infection to life-threatening sepsis. Even with antibiotics, these infections can still be fatal.

Senior author Magnus Höök, Ph.D. and his colleagues carried out biochemical and structural studies to determine the binding mechanism of clumping factor A (ClfA), a surface protein that plays an important role in the pathogenesis of S. aureus. The group found that ClfA binds to the blood-clotting protein fibrinogen (Fg) at a site that is also responsible for inducing platelet activation and thrombosis (clot inside a blood vessel).

The results show significant structural differences in how staphylococcal and platelet receptor proteins recognize fibrinogen. By exploiting this difference in recognition, the researchers show that agents could be designed that inhibit the ClfA–Fg interaction but do not interfere with the interaction of Fg with the platelet integrin, therefore avoiding unwanted side effects on the circulatory system.

Citation: Ganesh VK, Rivera JJ, Smeds E, Ko Y-P, Bowden MG, et al. (2008) A Structural Model of the Staphylococcus aureus ClfA–Fibrinogen Interaction Opens New Avenues for the Design of Anti-Staphylococcal Therapeutics. PLoS Pathog 4(11): e1000226. doi:10.1371/journal.ppat.1000226
dx.plos.org/10.1371/journal.ppat.1000226

Source: Public Library of Science

Explore further: Salmon forced to 'sprint' less likely to survive migration

add to favorites email to friend print save as pdf

Related Stories

Faster, safer method for producing stem cells

Dec 04, 2012

A new method for generating stem cells from mature cells promises to boost stem cell production in the laboratory, helping to remove a barrier to regenerative medicine therapies that would replace damaged ...

Drug mitigates toxic effects of radiation in mice

Jun 23, 2010

While radiation has therapeutic uses, too much radiation is damaging to cells. The most important acute side effect of radiation poisoning is damage to the bone marrow. The bone marrow produces all the normal blood cells, ...

New way of inhibiting cell cycle shows promise

Oct 22, 2008

Geneva, Switzerland: A new anti-cancer compound that works by blocking a part of the cell's machinery that is crucial for cell division has shown promising results in a phase I clinical trial in patients who have failed to ...

Recommended for you

Orb-weaving spiders living in urban areas may be larger

5 hours ago

A common orb-weaving spider may grow larger and have an increased ability to reproduce when living in urban areas, according to a study published August 20, 2014 in the open-access journal PLOS ONE by Eli ...

User comments : 0