Tiny sacs released by brain tumor cells carry information that may guide treatment

Nov 16, 2008

Microvesicles – tiny membrane-covered sacs – released from glioblastoma cells contain molecules that may provide data that can guide treatment of the deadly brain tumor. In their report in the December 2008 Nature Cell Biology, which is receiving early online release, Massachusetts General Hospital (MGH) researchers describe finding tumor-associated RNA and proteins in membrane microvesicles called exosomes in blood samples from glioblastoma patients. Detailed analysis of exosome contents identified factors that could facilitate a tumor's growth through delivery of genetic information or proteins, or signify its vulnerability to particular medications.

"Glioblastomas release exosomes in sufficient quantities to pass the blood-brain barrier. We were able to isolate them, analyze the RNA transcripts and show how they might be used as biomarkers to guide targeted therapy and monitor treatment response," says Johan Skog, PhD, the study's lead author, who works in the laboratory of Xandra Breakefield, PhD, at the MGH Neuroscience Center. "Exosomes also may someday be used to deliver therapeutic molecules to the site of a tumor," he added.

Many types of cells release exosomes as part of normal cell-to-cell communication, and several types of tumors are known to shed exosomes containing proteins that can alter the cellular environment to favor tumor growth. The current investigation is believed to be the first to carefully analyze the contents of exosomes shed from glioblastoma cells and characterize their contents.

The investigators first analyzed tumor cells from three glioblastomas and verified that the cells released exosomes containing RNA and protein molecules. Some messenger RNAs related to activities such as cell proliferation and migration, angiogenesis, and immune response were highly abundant in the exosomes. When glioblastoma exosomes were cultured with normal cells, tumor RNA was delivered into the normal cells and generated its encoded protein, supporting the role of exosome-delivered RNA in manipulating the cellular environment.

To study the potential of glioblastoma exosomes as markers of a tumor's genetic makeup, the researchers analyzed tumor tissue and blood serum from 25 glioblastoma patients and were able both to find tumor exosomes and to identify, in some tissue samples, a mutation in the epidermal growth factor receptor (EGFR) gene that characterizes a tumor subtype. In two patients, an EGFR mutation that did not appear in the tumor tissue sample was identified by exosome analysis, reflecting how a surgical biopsy can miss tissue conveying critical information because of the often-chaotic diversity of cells within a tumor.

"It is known that the effects of some anticancer drugs depend on a tumor's genetic mutational profile, so our results have broad implications for personalized medicine," explains Skog, who is an instructor in Neurology at Harvard Medical School. "Detecting mutational profiles through a noninvasive blood test could allow us to monitor how a tumor's genetic makeup changes in response to therapy, which may necessitate changes in treatment strategy." Skog, Breakefield and their colleagues are also investigating the role of exosomes in other solid tumors and how they may help monitor additional tumor-associated mutations.

The current study was supported by grants from the Wenner-Gren Foundation, Stiftelsen Olle Engkvist Byggmastare, the National Cancer Institute, the Brain Tumor Society and the American Brain Tumor Association. The MGH's provisional patent on the work described in this study has been exclusively licensed to Exosome Diagnostics, Inc. Subsequent to the completion of this work, Skog was appointed the company's director of Research, while maintaining his position at MGH.

Source: Massachusetts General Hospital

Explore further: Efforts to save rare northern white rhino continue

add to favorites email to friend print save as pdf

Related Stories

A better understanding of cell to cell communication

Aug 22, 2014

Researchers of the ISREC Institute at the School of Life Sciences, EPFL, have deciphered the mechanism whereby some microRNAs are retained in the cell while others are secreted and delivered to neighboring ...

Weighing nanoparticles at the attogram scale

Jan 13, 2014

MIT engineers have devised a way to measure the mass of particles with a resolution better than an attogram—one millionth of a trillionth of a gram. Weighing these tiny particles, including both synthetic ...

Tumor microvesicles reveal detailed genetic information

Feb 10, 2011

The Massachusetts General Hospital (MGH) research team that first discovered tumor-associated RNA in tiny membrane-enclosed sacs released into the bloodstream by cancer cells has now found that these microvesicles also contain ...

Recommended for you

A vegetarian carnivorous plant

16 hours ago

Carnivorous plants catch and digest tiny animals in order and derive benefits for their nutrition. Interestingly the trend towards vegetarianism seems to overcome carnivorous plants as well. The aquatic carnivorous bladderwort, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.