How household bleach works to kill bacteria

Nov 13, 2008

Despite the fact that household bleach is commonly used as a disinfectant, exactly how it works to fight bacteria remained an open question. Now, a report in the November 14th issue of the journal Cell, a Cell Press publication, provides an answer.

The researchers found that hypochlorous acid, the active ingredient in bleach, causes the unfolding of proteins in bacteria in much the same was that heat stress or fever does. Those denatured proteins then clump together irreversibly into a mass in living cells, similar to what happens to proteins when you boil an egg, according to the researchers.

The bacteria aren't totally defenseless, however. Under those circumstances, a protein chaperone called heat shock protein Hsp33 springs to action, protecting proteins from the aggregation effect and increasing the bacteria's bleach resistance. Protein chaperones are generally defined as proteins whose function is to help other proteins.

" We found both in vitro and in vivo that bleach attacks proteins," said Ursula Jakob of the University of Michigan, Ann Arbor. "They lose structure much like they would under high temperature. Under those circumstances, the [Hsp33] protein is specifically activated to increase resistance." Jakob emphasized that this newly discovered mechanism is clearly one way bleach kills bacteria, but it may not be the only way.

Why would bacteria have a system specifically designed to deal with bleach?

" Hypochlorous acid is an important part of host defense," Jakob said. "It's not just something we use on our countertops."

In fact, the innate immune systems of mammals, and specifically immune cells known as neutrophils, release high concentrations of hypochlorous acid (aka bleach) upon recognizing microbial invaders. In addition, Jakob said, some evidence suggests that enzymes that produce bleach may help keep the bacteria in our guts in check.

The specific effects of hypochlorous acid on proteins help to explain why hydrogen peroxide is an inferior antimicrobial agent even though both chemicals are expected to act as strong oxidants, Jakob said. Hydrogen peroxide doesn't do much for your countertops, she said, because it doesn't provoke these effects on proteins.

Hsp33 also represents another example of an emerging concept in protein biology: that some proteins actually become activated through the act of partial unfolding. Indeed, chaperones react to stress by unfolding in the same way that other proteins do. Far from leaving them useless, however, that change in conformation is exactly what turns them on. " Usually, we think proteins need structure to be active, but here they must lose structure to be active," Jakob said.

As for whether the findings will have any practical implications, Jakob said she isn't yet sure. For instance, she has doubts that bleach could be made to work any more effectively than it does, particularly given that it works so rapidly and so well as it is even at low concentrations.

The findings in bacteria could perhaps offer new insight into the damaging effects of bleach on our own proteins, she added, noting that hypochlorous acid produced by the immune system has been suspected to play a role in chronic inflammation. The protein unfolding seen in bacteria might explain what the chemical agent is doing, perhaps yielding clues about what might be done to stop it.

Source: Cell Press

Explore further: New findings on beetle flight may help control deadly walnut tree disease

add to favorites email to friend print save as pdf

Related Stories

Coral, human cells linked in death

Jun 09, 2014

Humans and corals are about as different from one another as living creatures get, but a new finding reveals that in one important way, they are more similar than anyone ever realized.

Plant enzyme's origins traced to non-enzyme ancestors

May 13, 2012

(Phys.org) -- As plants began to transition from aquatic habitats to dry land some 500 million years ago, their needs changed. Those primitive ancestors of modern plants were ill-equipped to survive in a dry, sunlight-blasted ...

Coral reefs in warming seas

Dec 09, 2011

Disease outbreaks are often associated with hot weather. Because many bacteria typically multiply more rapidly in warmer conditions, it's a commonly held notion that warm-weather outbreaks are a straightforward consequence ...

Recommended for you

DNA may have had humble beginnings as nutrient carrier

13 hours ago

New research intriguingly suggests that DNA, the genetic information carrier for humans and other complex life, might have had a rather humbler origin. In some microbes, a study shows, DNA pulls double duty ...

Central biobank for drug research

13 hours ago

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

No-take marine reserves a no-win for seahorses

14 hours ago

A UTS study on how seahorses are faring in no-take marine protected areas (MPAs) in NSW has revealed that where finishing is prohibited, seahorses aren't doing as well.

User comments : 0