Researchers trace octopuses' family tree

Nov 12, 2008
Megaleledon setebos, the closest living relative of the octopuses' common ancestor. Credit: Census of Marine Life

Many of the world's deep-sea octopuses evolved from species that lived in the Southern Ocean, according to new molecular evidence reported by researchers at Queen's University Belfast.

The findings of a study funded by the National Environment Research Council and led by Dr Louise Allcock at Queen's School of Biological Sciences and colleagues from Cambridge University and British Antarctic Survey will be reported at a conference in Spain this week.

The World Conference on Marine Biodiversity is taking place in Valencia between 11 and 15 November.

The Queen's research forms part of a decade-long global research programme to learn more about the world's oceans.

Octopuses started migrating to new ocean basins more than 30 million years ago as Antarctica cooled and large ice-sheets grew.

These huge climatic events created a 'thermohaline expressway' - a northbound flow of deep cold water, providing new habitat for the animals previously confined to the sea floor around Antarctica.

Isolated in new habitat conditions, many different species evolved. Some octopuses lost their defensive ink sacs because there was no need for the defence mechanisms in the pitch black waters more than two kilometres below the surface.

Dr Allcock, who was assisted on the study by Dr Jan Strugnell and Dr Paulo Prodöhl from Queen's, said: "It is clear from our research that climate change can have profound effects on biodiversity, with impacts even extending into habitats such as the deep oceans which you might expect would be partially protected from it.

"If octopuses radiated in this way, it's likely that other fauna did so also, so we have helped explain where some of the deep-sea biodiversity comes from."

This revelation into the global distribution and diversity of deep-sea fauna, to be reported this week in the respected scientific journal Cladistics, was made possible by intensive sampling during International Polar Year expeditions.

The findings form part of the first Census of Marine Life (CoML), set to be completed in late 2010. It aims to assess and explain the diversity, distribution and abundance of marine life in the oceans, past, present and future.

The project, which began in 2000, involves more than 2,000 scientists from 82 nations.

Source: Queen's University Belfast

Explore further: Japan's whaling bid tested by world panel

add to favorites email to friend print save as pdf

Related Stories

Colorado's stunning bee diversity

Sep 03, 2014

For many people, the mention of bees brings to mind swarms, stings, queens and honey. But the insects fitting that description—non-native European honeybees—represent only one kind of bee.

France fights back Asian hornet invader

Aug 20, 2014

They slipped into southwest France 10 years ago in a pottery shipment from China and have since invaded more than half the country, which is fighting back with drones, poisoned rods and even chickens.

Classic Lewis Carroll character inspires new ecological model

Jul 30, 2014

Inspired by the Red Queen in Lewis Carroll's Through the Looking Glass, collaborators from the University of Illinois and National University of Singapore improved a 35-year-old ecology model to better understand how species ...

EU must take urgent action on invasive species

Apr 16, 2014

The EU must take urgent action to halt the spread of invasive species that are threatening native plants and animals across Europe, according to a scientist from Queen's University Belfast.

Recommended for you

Japan's whaling bid tested by world panel

13 minutes ago

Japan's plans to resume a controversial Antarctic whale hunt in the name of research, which opponents say is really just for the meat, came under scrutiny in Slovenia on Tuesday.

Poachers turn gamekeeper to guard Rwandan gorillas

33 minutes ago

For four decades Leonidas Barora was a renowned hunter, tracking animals in the lush forests of Rwanda. Now he only fires arrows to impress tourists, and to help protect the wildlife.

Healthy humans make nice homes for viruses

11 hours ago

The same viruses that make us sick can take up residence in and on the human body without provoking a sneeze, cough or other troublesome symptom, according to new research at Washington University School ...

User comments : 0