From the Laboratory to the Road: Clean Driving with Fuel Cells

Oct 05, 2004
From the Laboratory to the Road: Clean Driving with Fuel Cells

This nippy little four-wheel vehicle has an interesting inner life: and that is meant quite literally! Scientists from Research Centre Jülich have equipped a commercial electric vehicle with a fuel cell that drives the conveyance via an electric motor. The chief attraction: the fuel cell used is a direct methanol fuel cell (DMFC), which – in contrast to many other types of fuel cell – does not use gaseous hydrogen, but rather converts liquid methanol into electricity. The advantage is quite obvious - liquid methanol is easier to handle and store than gaseous hydrogen; you can fill up the vehicle in the normal manner.

"The grand challenge consisted in designing the overall system comprising the fuel cell and all the components necessary for operation in such a way that it fitted in a vehicle. The vehicle itself should not have any major external modifications – and this is exactly what we have done", Professor Detlef Stolten, head of the Institute for Energy Process Engineering (IWV-3) describes his team's achievements. "This engineering is an indispensable part of modern fuel cell research."

Getting the electromobile with a fuel cell drive system on the road was only possible through a real team effort by several working groups within IWV-3 and the Central Technology Division (ZAT). Instead of three conventional lead-acid batteries, as installed by the manufacturer, the vehicle is now powered by a hybrid drive consisting of a fuel cell and a lithium-ion battery. In normal operation, the fuel cell drives the vehicle's electric motor. The battery is called upon in cases of special load such as when starting or driving uphill. The fuel cell then continuously recharges the battery. With a full tank, the vehicle has about twice as great a range amounting to an estimated 120 kilometres and, moreover, there is no need to "fill it up" at an electric socket. The vehicle is ready for use at any time.

This project required a great deal of detailed development work. Thus, for example, the installed fuel cell stack has a power of 1.3 kilowatts and consists of 100 single cells. The central component of each cell is the membrane electrode assembly (MEA). Such MEAs are now produced mechanically at IWV-3 and no longer by hand. In this way, the scientists can continue to improve manufacturing techniques for fuel cells and fabricate high-quality components in a near-industrial and low-cost process.

The fuel cell electrodes contain platinum as the catalyst. On the one hand, this noble metal facilitates the chemical reaction that produces electricity, but on the other hand it is very expensive. The researchers have succeeded in using platinum very sparingly in the electrodes thus reducing the quantity required to less than half that needed for the previous state of the art. Furthermore, they used a special graphite for the cell components instead of metallic materials. This means the stack is lighter and cheaper. Finally, many functions – such as the methanol supply – have been integrated into the stack. The new design is space-saving and has "consequences" for the surrounding system components. It is, for example, no longer necessary to preheat or humidify the air, which is the methanol's reactant. Altogether, the scientists have "shrunk" the whole system by a factor of three to four to make it fit into the electric vehicle.

The Jülich demonstration vehicle has successfully completed its first road trials. It is now being put through its paces. And it is going on tour in October. At the "Fuel Cell Seminar 2004" in San Antonio, Texas, the electromobile will be presented to about 2000 conference delegates at the beginning of November. "With our demonstration vehicle we also intend to seek potential industrial partners with whom we can continue to jointly develop the system," says Detlef Stolten looking further into the future.

The Science Minister of North Rhine-Westphalia, Hannelore Kraft, was very pleased with the success of the Jülich scientists: "Fuel cells have convincing properties as future energy converters. They are extremely clean, environmentally friendly, efficient, and everybody is now talking about them for use in road vehicles, laptops and small power plants. With the "JuMOVe" electric vehicle, the Jülich scientists have demonstrated a possible application for fuel cells in the mobile sector." The Ministry for Science and Research in NRW has supported the development of fuel cell technology at Research Centre Jülich in the past four years to the tune of € 1.5 million.

Source: Forschungszentrum Juelich

Explore further: Lenovo's smart glasses prototype has battery at neck

add to favorites email to friend print save as pdf

Related Stories

The future's most pressing energy questions

Jul 16, 2014

Top researchers, entrepreneurs, scholars, and policymakers from Massachusetts and Switzerland convened at Northeastern University on Friday for an energy summit, where participants discussed innovations and ...

Chinese officials will buy more electric cars

Jul 14, 2014

At least 30 percent of newly purchased government cars will be electric and other types of "new energy vehicles," China's official news agency reported Sunday, as the country attempts to tackle air pollution and encourage ...

Recommended for you

Chinese smartphone makers win as market swells

53 minutes ago

Chinese smartphone makers racked up big gains as the global market for Internet-linked handsets grew to record levels in the second quarter, International Data Corp said Tuesday.

Full appeals court upholds labels on meat packages

53 minutes ago

(AP)—A federal appeals court has upheld new government rules that require labels on packaged steaks, ribs and other cuts of meat to say where the animals were born, raised and slaughtered.

Connected devices have huge security holes: study

1 hour ago

The surge Web-connected devices—TVs, refrigerators, thermostats, door locks and more—has opened up huge opportunities for cyberattacks because of weak security, researchers said Thursday.

BlackBerry to buy Germany's Secusmart

1 hour ago

(AP)—German voice and data encryption specialist Secusmart, which helps equip the German government with secure smartphones, says it's being acquired by BlackBerry for an undisclosed sum.

India's Flipkart raises $1 bn to tackle Amazon

3 hours ago

India's top e-commerce company Flipkart said Tuesday it had raised $1 billion (60 billion rupees) in funds as it battles US giant Amazon for supremacy in the hyper-competitive local market.

User comments : 0