Tale of two snails reveals secrets about the biochemistry of evolution

Nov 03, 2008
A study of two populations of marine snails provides new insights into how evolutionary changes works on the chemical level. Credit: American Chemical Society

Researchers in Spain are reporting deep new insights into how evolution changes the biochemistry of living things, helping them to adapt to new environments. Their study, based on an analysis of proteins produced by two populations of marine snails, reveals chemical differences that give one population a survival-of-the fittest edge for life in its cold, wave-exposed environment. Their report is scheduled for the November 7 issue of ACS' Journal of Proteome Research.

In the new study, Emilio Rolán-Alvarez and colleagues note that scientists long have known that animals of the same species can have different physical characteristics enabling them to survive in different habitats.

One famous example is the different beak sizes and shapes that evolved in Darwin's finches, enabling the birds to live on different foods in different habitats on the Galapagos Islands. Until now, however, scientists knew little about the invisible biochemical changes behind such adaptations.

To help fill those gaps, the scientists studied two populations of marine snails that live only a few feet apart on the Spanish coast. One group lives on the lower shore, typically submerged in water and protected from large changes in temperature. The other group lives on the upper shore exposed to daily changes in temperature, humidity and other environmental conditions. Tests with mass spectrometry showed major differences in about 12 percent of the proteins in the snail, a subset of proteins that apparently enables the snails to survive in different environmental conditions. — MTS

Article: "Proteomic Comparison between Two Marine Snail Ecotypes Reveals Details about the Biochemistry of Adaptation" dx.doi.org/10.1021/pr700863e

Source: ACS

Explore further: Plug n' Play protein crystals

add to favorites email to friend print save as pdf

Related Stories

Watching others play video games is the new spectator sport

39 minutes ago

As the UK's largest gaming festival, Insomnia, wrapped up its latest event on August 25, I watched a short piece of BBC Breakfast news reporting from the festival. The reporter and some of the interviewees appeared baff ...

Recommended for you

Team pioneers strategy for creating new materials

18 hours ago

Making something new is never easy. Scientists constantly theorize about new materials, but when the material is manufactured it doesn't always work as expected. To create a new strategy for designing materials, ...

Plug n' Play protein crystals

23 hours ago

Almost a hundred years ago in 1929 Linus Pauling presented the famous Pauling's Rules to describe the principles governing the structure of complex ionic crystals. These rules essentially describe how the ...

Protein glue shows potential for use with biomaterials

Aug 28, 2014

Researchers at the University of Milan in Italy have shown that a synthetic protein called AGMA1 has the potential to promote the adhesion of brain cells in a laboratory setting. This could prove helpful ...

User comments : 0