Research team maps cell interactions

Oct 29, 2008

(PhysOrg.com) -- Proteins make up the machinery of the cell. Their interaction with each other is responsible for how the cell functions within a living organism. Intrigued by what these interactions may look like, scientists have been working to map networks of physical DNA-, RNA-, and protein-protein interactions.

Northeastern University physicist Albert-László Barabási, in collaboration with a research team lead by Marc Vidal from Dana Farber Cancer Institute, carried out a comparative quality assessment of binary interactions using the yeast S. cerevisiae as a model system.

In order to better understand interactome network structure and functions, Barabási and his collaborators developed advanced methodology to analyze currently available maps by comparing the quality of existing high-throughput binary and co-complex data sets to information obtained from curating low-throughput experiments.

In the paper discussing the study, the authors talk about extensive quality assessments, during which they found that protein connectivity within cells significantly influences the phenotype of the cells. In identifying several hundreds of interactions between high-quality binary proteins and testing and re-testing those to filter out false positives, the group developed an empirically controlled mapping framework to produce a second-generation high-quality, high-throughput Y2H data set covering 20% of all yeast binary interactions.

While relying on confirmed protein-protein interactions beyond those seen in previous studies, this study confirmed that the more connected proteins are, the more consequential their actions will be for the behavior and the phenotype of the entire cell. The high-quality interaction map and the research team created as a result of this collaboration will take understanding of the interactome network’s global and local properties and its relationship with multicellular functions to a new level.

“We found that only a few percent of the newly identified interactions are false-positives, which is much lower than previous quality assessments of large-scale yeast two-hybrid experiments suggested,” said Barabási, Distinguished Professor of Physics and Director of the Center for Complex Network Research at Northeastern University. “We can conclude that protein connectivity correlates with genetic pleiotropy, i.e. the more connected is a protein, the larger the consequences of its removal.”

The study, conducted in collaboration with Boston’s Dana Farber Cancer Institute and Harvard Medical School, appeared in the latest issue of Science magazine.

Provided by Northeastern University

Explore further: Infrared light puts malaria to the test

add to favorites email to friend print save as pdf

Related Stories

A quantum logic gate between light and matter

Apr 10, 2014

Scientists at Max Planck Institute of Quantum Optics, Garching, Germany, successfully process quantum information with a system comprising an optical photon and a trapped atom.

Quantum researchers close in on dream vacancy

Feb 19, 2014

(Phys.org) —Defects in microscopic diamonds caused by the presence of silicon could provide researchers with a potent basis for developing new technologies, including nanoscale sensing devices.

Alan Turing at 100

Sep 14, 2012

It is hard to overstate the importance of Alan Turing, the British mathematician who died in 1954. He was a hero in science, for one. Turing invented the concepts that underlie modern computers and artificial ...

New phenomenon in nanodisk magnetic vortices

Aug 08, 2012

(Phys.org) -- The phenomenon in ferromagnetic nanodisks of magnetic vortices – hurricanes of magnetism only a few atoms across – has generated intense interest in the high-tech community because ...

Swift narrows down origin of important supernova class

Mar 20, 2012

(PhysOrg.com) -- Studies using X-ray and ultraviolet observations from NASA's Swift satellite provide new insights into the elusive origins of an important class of exploding star called Type Ia supernovae. ...

Recommended for you

User comments : 0

More news stories