Genetic based human diseases are an ancient evolutionary legacy

Oct 16, 2008
Artistic illustration of a phylostratigraphy. Image: Irena Andreic, Ruđer Bošković Institute, Zagreb

Tomislav Domazet-Lošo and Diethard Tautz from the Max Planck Institute for Evolutionary Biology in Plön, Germany, have systematically analysed the time of emergence for a large number of genes - genes which can also initiate diseases. Their studies show for the first time that the majority of these genes were already in existence at the origin of the first cells. The search for further genes, particularly those which are involved in diseases caused by several genetic causes, is thus facilitated. Furthermore, the research results confirm that the basic interconnections are to be found in the function of genes - causing the onset of diseases - can also be found in model organisms (Molecular Biology and Evolution).

The Human Genome Project that deciphered the human genetic code, uncovered thousands of genes that, if mutated, are involved in human genetic diseases. The genomes of many other organisms were deciphered in parallel. This now allows the evolution of these disease associated genes to be systematically studied.

Tomislav Domazet-Lošo and Diethard Tautz from the Max Planck Institute for Evolutionary Biology in Plön (Germany) have used for this analysis a novel statistical method, "phylostratigraphy" that was developed by Tomislav Domazet-Lošo at the Ruđer Bošković Institute in Zagreb (Croatia). The method allows the point of origin for any existing gene to be determined by tracing the last common ancestor in which this gene existed. Based on this information, it is then possible to determine the minimum age for any given gene.

Applying this method to disease genes, the scientists from Plön came to surprising findings. The vast majority of these genes trace back to the origin of the first cell. Other large groups emerged more than one billion years ago around the first appearance of multi-cellular organisms, as well as at the time of origin of bony fishes about 400 million years ago. Surprisingly, they found almost no disease associated genes among those that emerged after the origin of mammals.

These findings suggest that genetic diseases affected primarily ancient cellular processes, which emerged already during the early stages of life on Earth. This leads to the conclusion that all living organisms today, i.e. not only humans, will be affected by similar genetic diseases. Furthermore, this implies that genetically caused diseases will never be beaten completely, because they are linked to ancient evolutionary processes.

Although it was already known that many disease associated genes occur also in other organisms distant to humans, such as the fruitfly Drosophila or the round worm Caenorhabditis, the analysis of Domazet-Lošo and Tautz shows now for the first time that this is systematically true for the vast majority of these genes. At present it remains unknown why the more recently evolved genes, for example those involved in the emergence of the mammals, do not tend to cause diseases when mutated.

The research results of the scientists from Plön also have some practical consequences. It will now be easier to identify candidates for further disease genes, in particular for those involved in multi-factorial diseases. Furthermore, the results confirm that the functional knowledge gained about such genes from remote model organisms is also relevant for understanding the genes in humans.

Citation: Tomislav Domazet-Lošo und Diethard Tautz, An ancient evolutionary origin of genes associated with human genetic diseases. Molecular Biology and Evolution, September 26, 2008; doi 10.1093/molbev/msn214

Source: Max-Planck-Gesellschaft

Explore further: New study charts the global invasion of crop pests

add to favorites email to friend print save as pdf

Related Stories

A better understanding of cell to cell communication

Aug 22, 2014

Researchers of the ISREC Institute at the School of Life Sciences, EPFL, have deciphered the mechanism whereby some microRNAs are retained in the cell while others are secreted and delivered to neighboring ...

Plants can 'switch off' virus DNA

Aug 22, 2014

A team of virologists and plant geneticists at Wageningen UR has demonstrated that when tomato plants contain Ty-1 resistance to the important Tomato yellow leaf curl virus (TYLCV), parts of the virus DNA ...

Progress in the fight against harmful fungi

Aug 20, 2014

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

Genetically tracking farmed fish escaping into the wild

Aug 20, 2014

European sea product consumption is on the rise. With overfishing being a threat to the natural balance of the ocean, the alternative is to turn to aquaculture, the industrial production of fish and seafood. ...

Recommended for you

New study charts the global invasion of crop pests

10 hours ago

Many of the world's most important crop-producing countries will be fully saturated with pests by the middle of the century if current trends continue, according to a new study led by the University of Exeter.

Zambia lifts ban on safari hunting

12 hours ago

Zambia has lifted a 20-month ban on safari hunting because it has lost too much revenue, but lions and leopards will remain protected, the government said Wednesday.

Wolves susceptible to yawn contagion

15 hours ago

Wolves may be susceptible to yawn contagion, according to a study published August 27, 2014 in the open-access journal PLOS ONE by Teresa Romero from The University of Tokyo, Japan, and colleagues.

User comments : 0