Iowa State University researcher developed forerunner of Nobel research in 1986

Oct 14, 2008
Howell's research allowed this tobacco plant to illuminate. Image: Iowa State University

This year's Nobel Prize for chemistry was given to researchers for their work on illuminating living cells that enables scientists and researchers to study how genes, proteins, and entire cells operate.

An Iowa State University professor developed another technology producing similar results more than 20 years ago.

Stephen Howell, director of the Plant Sciences Institute at Iowa State, developed the process when working with the firefly luciferase gene that illuminates cells in an organism, just as the Nobel-winning research does. At the time Howell and his staff were conducting research at the University of California, San Diego.

"Fundamentally it's the same sort of thing," said Howell. "Both of the technologies allow you to visualize things that are otherwise very difficult to see. It might be a biochemical process. Maybe it's a gene turning on and off."

At the time of its discovery, Howell's research and the picture of a glowing tobacco plant got the attention of the national press, including an interview on NBC's "Today Show" and other national and international media.

While the two technologies do much the same thing, the major difference between the them is in how they work.

The technology that was awarded the Nobel Prize uses green fluorescent protein (GFP). It involves incorporating the GFP protein into the living cell and then watching what happens with the use of an ultraviolet light. GFP was developed in 1994.

Howell's 1986 technology takes advantage of the chemiluminescence generating properties of luciferase rather than fluorescence. Luciferase technology does not require using an ultraviolet light as does GFP to see the activity in the cell.

Luciferase allows fireflies to glow and is introduced into other organisms by researchers.

Both of the technologies are competitive and complementary, he said.

"In research we've done over the years here, we've used luciferase and GFP," said Howell of the technologies. "Both of them enable us to visualize, and both are important to our field of research."

Source: Iowa State University

Explore further: Mineral magic? Common mineral capable of making and breaking bonds

add to favorites email to friend print save as pdf

Related Stories

First in-situ images of void collapse in explosives

1 hour ago

While creating the first-ever images of explosives using an x-ray free electron laser in California, Los Alamos researchers and collaborators demonstrated a crucial diagnostic for studying how voids affect ...

NASA maps Typhoon Matmo's Taiwan deluge

1 hour ago

When Typhoon Matmo crossed over the island nation of Taiwan it left tremendous amounts of rainfall in its wake. NASA used data from the TRMM satellite to calculate just how much rain fell over the nation.

Recommended for you

Building the ideal rest stop for protons

16 minutes ago

Where protons, or positive charges, decide to rest makes the difference between proceeding towards ammonia (NH3) production or not, according to scientists at Pacific Northwest National Laboratory (PNNL) and ...

Cagey material acts as alcohol factory

1 hour ago

Some chemical conversions are harder than others. Refining natural gas into an easy-to-transport, easy-to-store liquid alcohol has so far been a logistic and economic challenge. But now, a new material, designed ...

User comments : 0