Forsyth scientists trigger cancer-like response from embryonic stem cells

Oct 13, 2008

Scientists from The Forsyth Institute, working with collaborators at Tufts and Tuebingen Universities, have discovered a new control over embryonic stem cells' behavior. The researchers disrupted a natural bioelectrical mechanism within frog embryonic stem cells and trigged a cancer-like response, including increased cell growth, change in cell shape, and invasion of the major body organs. This research shows that electrical signals are a powerful control mechanism that can be used to modulate cell behavior.

The team of Forsyth Institute scientists, led by Michael Levin, Ph.D., Director of the Forsyth Center for Regenerative and Developmental Biology, have identified a new function for a potassium (KCNQ1) channel, mutations of which are known to be involved in human genetic diseases such as Romano-Ward and Jervell-Lange-Nielsen syndromes.

The team interrupted the flow of potassium through KCNQ1 in parts of the Xenopus frog embryo. This resulted in a striking alteration of the behavior of one type of embryonic stem cell: the pigment cell lineage of the neural crest. When mutated, these pigment cells over-proliferate, spread out, and become highly invasive of blood vessels, liver, heart, and neural tube, leading to a deeply hyper-pigmented tadpole.

The body's natural biophysical signals, driven by ion transporter proteins and resulting in endogenous voltage gradients and electric fields, have been implicated in embryonic development and regeneration. The data in this study, which will be published in the Proceedings of the National Academy of Sciences on October 13, 2008, have not only elucidated a novel role for the KCNQ1 channel in regulating key cell behaviors, but for the first time have also revealed the molecular identity of a biophysical switch by means of which neoplastic-like properties can be conferred upon a specific embryonic stem cell sub-population. These data reveal that key properties of embryonic stem cells can be controlled through bioelectrical signals, identify transmembrane voltage potential as a novel regulator of neural crest function in embryonic development, and demonstrate that potassium flows can be an important aspect of cellular environment, which is known to regulate both cancer and stem cells.

"In regenerative medicine, a key goal is to control the number, position, and type of cells," said the paper's first author, Junji Morokuma, Ph.D. "This research is especially exciting because it shows the importance of electrical signals for changing cell behavior, identifies a new role in developmental and cell biology for the KCNQ1 ion channel, and strengthens the link between stem cells and tumor cells. Added Doug Blackiston, Ph.D., paper co-author, "In the future, this work may lead to a greater understanding of the causes of cancer and ways to potentially halt its metastasis, as well as suggesting new techniques by which stem cells may be controlled in biomedical applications."

Source: Forsyth Institute

Explore further: Dairy farms asked to consider breeding no-horn cows

add to favorites email to friend print save as pdf

Related Stories

Stem cells make similar decisions to humans

14 hours ago

Scientists at the University of Copenhagen have captured thousands of progenitor cells of the pancreas on video as they made decisions to divide and expand the organ or to specialize into the endocrine cells that regulate ...

Sall4 is required for DNA repair in stem cells

Mar 02, 2015

A protein that helps embryonic stem cells (ESCs) retain their identity also promotes DNA repair, according to a study in The Journal of Cell Biology. The findings raise the possibility that the protein, Sall4, ...

Recommended for you

Dairy farms asked to consider breeding no-horn cows

21 hours ago

Food manufacturers and restaurants are taking the dairy industry by the horns on an animal welfare issue that's long bothered activists but is little known to consumers: the painful removal of budding horn ...

Italian olive tree disease stumps EU

Mar 27, 2015

EU member states are divided on how to stop the spread of a disease affecting olive trees in Italy that could result in around a million being cut down, officials said Friday.

China starts relocating endangered porpoises: Xinhua

Mar 27, 2015

Chinese authorities on Friday began relocating the country's rare finless porpoise population in a bid to revive a species threatened by pollution, overfishing and heavy traffic in their Yangtze River habitat, ...

A long-standing mystery in membrane traffic solved

Mar 27, 2015

In 2013, James E. Rothman, Randy W. Schekman, and Thomas C. Südhof won the Nobel Prize in Physiology or Medicine for their discoveries of molecular machineries for vesicle trafficking, a major transport ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet Oct 13, 2008
Right track! Continue!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.