Astrocytes and synaptic plasticity

Oct 13, 2008

By mopping up excess neurotrophic factor from neuronal synapses, astrocytes may finely tune synaptic transmission to affect processes such as learning and memory, say Bergami et al.

The major cellular events of learning and memory are long-term potentiation (LTP) and long-term depression (LTD), both of which affect neurons' ability to communicate with one another. Neurons that have undergone LTP display a stronger electrical response to the same level of a stimulus, whereas neurons that have gone through LTD display a weaker response. These changes are thought to result from modifications of the neuronal synapses, such as alterations in the density of postsynaptic receptors, or downstream signaling events.

Secretion of the neurotrophic factor BDNF (brain-derived neurotrophic factor) has been implicated in long-term synaptic modification, and the function of BDNF on synaptic strength depends on its particular form: in its pro-BDNF form it is believed to promote LTD, and in its mature form it prompts LTP. Neurons were thought to secrete pro-BDNF, which then matured into BDNF in the synaptic space. However, a recent study suggests that only mature BDNF is secreted, pro-BDNF being processed intracellularly.

To get to the bottom of things, Bergami et al. investigated the fate of both forms after LTP induction in brain slices from the rat cortex. By fluorescent immunohistochemistry they showed that that neurons indeed secrete both mature and pro-BDNF, but that a large amount of the pro-BDNF is immediately taken up by astrocytes.

Astrocytes, previously thought to be unimportant in neuronal transmission, have recently been implicated in long-term modulation of neuronal synapses. For example, they release the neurotransmitter glutamate into the synapse prompting LTP. By specifically mopping up pro-BDNF, astrocytes seem to have another means to assist in LTP. However, while it's likely that most pro-BDNF gets degraded inside astrocytes, say the authors, some gets recycled and re-released, suggesting that astrocytes in fact fine-tune synaptic plasticity.

Citation: Bergami, M., et al. 2008. J. Cell Biol. doi:10.1083/jcb.200806137.

Source: Rockefeller University

Explore further: Rising temperatures can be hard on dogs

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Rising temperatures can be hard on dogs

5 hours ago

The "dog days of summer" are here, but don't let the phrase fool you. This hot time of year can be dangerous for your pup, says a Kansas State University veterinarian.

Monkeys fear big cats less, eat more, with humans around

8 hours ago

Some Monkeys in South Africa have been found to regard field scientists as human shields against predators and why not if the alternative is death by leopard? The researchers found the monkeys felt far safer ...

User comments : 0