The Color of Evolution: How One Fish Became Two Fish

Oct 07, 2008 By Kelly Blake
The Color of Evolution: How One Fish Became Two Fish

(PhysOrg.com) -- Ever since Darwin discovered that species can evolve, scientists have wondered how new species form. Answering this question is the key to understanding the diversity of all of life. A group of colorful fishes in Africa's Lake Victoria have been the focus of scientific efforts to unravel how new species form. This lake contains more than 500 species of cichlids, which play a leading role because of their rapid speciation and remarkable diversity. Still, the mechanisms involved in the rapid appearance of new cichlid species have remained elusive to scientists.

Now a new study highlighted on the cover of the journal Nature (October 1, 2008) suggests that species of Lake Victorian cichlids became new species after changes in how they see led to changes in the mates that they selected. The group of biologists, which is led by Ole Seehausen of the University of Bern in Switzerland, and includes Karen Carleton of the University of Maryland, say that the phenomenon provides evidence that differences in sensory perception contribute to the development of new species.

For many years, scientists have linked evolution to the environment and suggested that new species arise when populations become geographically isolated from one another, thus forcing them to adapt differently. The idea that organisms living right next to each other can separate into two new species has been proposed, but difficult to prove.

The waters of Lake Victoria, which borders Uganda, Kenya, and Tanzania, are murky and red light penetrates deeper than blue light. In the shallow waters, the male fish tend to be green to blue, and in the deeper waters, the male fish are marked by a brilliant red. "These fish specialized to different microhabitats," Carleton explains, "which in this case is different depths. The visual system then specialized to the light environment at these depths and the mating colors shifted to match. Once this happened, these two groups no longer interbred and so became new species."

Carleton's previous research had identified long and short wavelength sensitive variants in one of the genes responsible for tuning the fish's vision to different depths. For this new study, the researchers sequenced hundreds of fish captured in the wild and showed that these visual variants segregate with depth and male color, supporting the idea that these fish have specialized to inhabit these micro niches.

The study is also significant because it shows the importance of lighting in the environment to the survival of the fish species, and the detrimental impact of pollution on biodiversity.

"With human activity contributing run off and algal growth in Lake Victoria, the water has been getting more turbid," Carleton says. "With very turbid water, the species can't distinguish each other anymore and so interbreed, leading to a loss of biodiversity."

Carleton's contribution to this study adds to a substantial body of research conducted by faculty in the College of Chemical and Life Sciences' Department of Biology that is seeking to understand animal communication and sensory systems and their role in speciation. Much of this research will be highlighted at the university's Bioscience Research and Technology Review Day 2008 on November 12. This year's program is organized under the theme of "Evolution and 21st Century Science" to coincide with the observance of Charles Darwin's 200th birthday.

Provided by University of Maryland

Explore further: Study identifies first-ever human population adaptation to toxic chemical, arsenic

add to favorites email to friend print save as pdf

Related Stories

Fighting invasive species in Michigan's lakes

Feb 25, 2015

Everyone knows that clean water is important. But for the state of Michigan, surrounded on three sides by the Great Lakes, it is absolutely essential—to the economy and the environment. That's why the research being done ...

Recommended for you

The origins of polarized nervous systems

9 hours ago

(Phys.org)—There is no mistaking the first action potential you ever fired. It was the one that blocked all the other sperm from stealing your egg. After that, your spikes only got more interesting. Waves ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.