Don't stress! Bacterial crisis command center revealed

Oct 02, 2008
Don't stress! Bacterial crisis command center revealed
An image of a 'stressosome' from inside a bacteria cell

A bacteria cell's 'crisis command centre' has been observed for the first time swinging into action to protect the cell from external stress and danger, according to new research out today (3 October) in Science.

The research team behind today's study says that finding out exactly how bacteria respond and adapt to stresses and dangers is important because it will further their understanding of the basic survival mechanisms of some of the most resilient, hardy organisms on Earth.

The crisis command centre in certain bacteria cells is a large molecule, dubbed a 'stressosome' by the scientists behind today's research. These cells have around 20 stressosomes floating around inside them, and although scientists knew they played an important role in the cell's response to stressful situations, the complexities of this process had not been fully understood until now.

If a bacteria cell finds itself in a dangerous situation - for example, if the temperature or saltiness of the bacteria's environment reach dangerous levels which threaten the survival of the bacteria -a warning signal from the cell's surface is transmitted into the cell.

Using cutting edge electron microscopy imaging techniques the authors of the new research observed that the stressosomes receive this warning signal, and in response several proteins called RSBT break away from the large stressosome. This breakaway triggers a cascade of signals within the cell which results in over 150 proteins being produced - proteins which enable the cell to adapt, react and survive in its new environment.

Professor Marin van Heel from Imperial College London's Department of Life Sciences, one of the corresponding authors of the study, explains: "The cascade of events inside bacteria cells that occurs as a result of stressosomes receiving warning signals leads to particular genes inside the cell being transcribed more. This means that some genes already active inside the cell are 'turned up' so that levels of particular proteins in the cell increase. These changes to the protein make-up of the cell enable it to survive in a hostile or challenging environment."

Dr Jon Marles-Wright from Newcastle University says: "Our work shows that cells respond to signals much like a dimmer on a light switch. Now we'll be building on this to work out how nature controls that dimmer switch. We wouldn't have been able to carry out this work without access to the Diamond synchrotron Light Source which has enabled us to examine the structures of individual stressosome proteins at atomic resolution."

Dr Tim Grant, one of Imperial's post doctoral researchers, adds that the key to bacteria cells' success at surviving in rapidly changing environments is their speedy response: "The cell's stressosomes are very good at their job as crisis command centres because they provide a very fast effective response to danger. The chain reaction they kickstart produces results really quickly which enables bacteria to adapt to changes in their surroundings almost instantaneously."

The team is now planning to collect very high resolution data of the stressosome complex on the world's newest high-resolution cryo electron microscope, the FEI "KRIOS" that has just been installed in the Max Planck Institute in Martinsried, Germany. Improving the resolution of the stressosome structure by a factor of two will lead to a resolution range normally only attainable by X-ray crystallography and will allow the researchers to directly see the amino-acid components of this fascinating complex.

Source: Imperial College London

Explore further: Dwindling wind may tip predator-prey balance

add to favorites email to friend print save as pdf

Related Stories

Protein secrets of Ebola virus

Sep 15, 2014

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

New insights in survival strategies of bacteria

Sep 14, 2014

Bacteria are particularly ingenious when it comes to survival strategies. They often create a biofilm to protect themselves from a hostile environment, for example during treatment with antibiotics. A biofilm is a bacterial ...

Recommended for you

Dwindling wind may tip predator-prey balance

Sep 19, 2014

Bent and tossed by the wind, a field of soybean plants presents a challenge for an Asian lady beetle on the hunt for aphids. But what if the air—and the soybeans—were still?

Environmental pollutants make worms susceptible to cold

Sep 19, 2014

Some pollutants are more harmful in a cold climate than in a hot, because they affect the temperature sensitivity of certain organisms. Now researchers from Danish universities have demonstrated how this ...

Research helps steer mites from bees

Sep 19, 2014

A Simon Fraser University chemistry professor has found a way to sway mites from their damaging effects on bees that care and feed the all-important queen bee.

User comments : 0