Novel anti-cancer mechanism found in long-lived rodents

Sep 18, 2008

Biologists at the University of Rochester have found that small-bodied rodents with long lifespans have evolved a previously unknown anti-cancer mechanism that appears to be different from any anticancer mechanisms employed by humans or other large mammals. The findings are published in today's issue of Aging Cell.

Understanding this mechanism may help prevent cancer in humans because many human cancers originate from stem cells and similar mechanisms may regulate stem cell division.

"We haven't come across this anticancer mechanism before because it doesn't exist in the two species most often used for cancer research: mice and humans," says Vera Gorbunova, assistant professor of biology at the University of Rochester, a principal investigator of this study. "Mice are short-lived and humans are large-bodied. But this mechanism appears to exist only in small, long-lived animals."

Gorbunova believes that cells of long-lived, small-bodied rodents are hypersensitive to cues from the surrounding tissue. If the cells sense that conditions are inappropriate for growth, they slow down cell division. Such a mechanism would arrest tumor growth and prevent metastases.

Gorbunova's team has worked at length investigating the links between body size and lifespan in rodents because rodents range in size from tiny field mice to the human-sized capybara of Brazil. She can use them to compare size and lifespan across several different-sized but closely related animals. She discovered that telomerase—an enzyme that can lengthen the lives of cells, but can also increase the rate of cancer—is highly active in small rodents, but not in large ones.

Until Gorbunova's research, the prevailing wisdom has assumed that an animal that lived as long as we humans do needed to suppress telomerase activity to guard against cancer. Telomerase helps cells reproduce, and cancer is essentially runaway cellular reproduction, so an animal living for 70 years has a lot of chances for its cells to mutate into cancer. A mouse's life expectancy is shortened by other factors in nature, such as predation, so it was thought the mouse could afford the slim cancer risk to benefit from telomerase's ability to speed healing.

But Gorbunova and colleagues showed that it was not life expectancy, but body mass that regulated the expression of telomerase. Simply having more cells increases the likelihood that one will become cancerous. We humans, as large animals, would likely develop cancer much more often and much earlier if we didn't suppress our telomerase.

While the findings were a surprise, they revealed another question: What about small animals like the common grey squirrel that live for 24 years or more? With telomerase fully active over such a long period, why isn't cancer rampant in these creatures?

Gorbunova found that the squirrel, naked mole-rat, chipmunk, muskrat, and chinchilla express high levels of telomerase, which would be expected to increase their cancer risk over their long lifetimes. But these species have developed a mechanism to counteract the high telomerase activity and remain cancer free for the duration of their lifespans.

"Squirrels know a cure for cancer," says Gorbunova. "Short-lived small species display continuous rapid proliferation of their cells, but these long-lived rodents have somehow found a way to slow down that proliferation when they need to."

Gorbunova thinks that squirrels and similar rodents have evolved a strict monitoring function within their cells that may be able to sense appropriate and inappropriate cell division—i.e., healthy reproduction and runaway cancerous reproduction—and slow or inhibit the division if necessary.

Gorbunova is now looking to isolate and understand this mechanism with the hope that it may be applicable to help human cells thwart the onset of tumor growth.

Source: University of Rochester

Explore further: France fights back Asian hornet invader

add to favorites email to friend print save as pdf

Related Stories

Inside the cell, an ocean of buffeting waves

Aug 14, 2014

Conventional wisdom holds that the cytoplasm of mammalian cells is a viscous fluid, with organelles and proteins suspended within it, jiggling against one another and drifting at random. However, a new biophysical ...

Crystal structure of COP9 signalosome elucidated

Aug 13, 2014

Nicolas Thomä and his group at the Friedrich Miescher Institute for Biomedical Research have elucidated the crystal structure of the human COP9 signalosome, an important regulator of protein degradation. ...

Synthetic molecule makes cancer self-destruct

Aug 11, 2014

Researchers from The University of Texas at Austin and five other institutions have created a molecule that can cause cancer cells to self-destruct by ferrying sodium and chloride ions into the cancer cells.

Recommended for you

Genetically tracking farmed fish escaping into the wild

3 minutes ago

European sea product consumption is on the rise. With overfishing being a threat to the natural balance of the ocean, the alternative is to turn to aquaculture, the industrial production of fish and seafood. ...

France fights back Asian hornet invader

3 hours ago

They slipped into southwest France 10 years ago in a pottery shipment from China and have since invaded more than half the country, which is fighting back with drones, poisoned rods and even chickens.

Tide turns for shark fin in China

3 hours ago

A sprawling market floor in Guangzhou was once a prime location for shark fin, one of China's most expensive delicacies. But now it lies deserted, thanks to a ban from official banquet tables and a celebrity-driven ...

New research reveals clock ticking for fruit flies

3 hours ago

The army of pesky Queensland fruit flies that annually inflict many millions of dollars-worth of damage on the nation's horticultural industry may be about to see their numbers take a significant dive thanks ...

The ABC's of animal speech: Not so random after all

5 hours ago

The calls of many animals, from whales to wolves, might contain more language-like structure than previously thought, according to study that raises new questions about the evolutionary origins of human language.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet Sep 19, 2008
It has to do with "ENERGY". Energy EXPENDED is not available to accelerate mitosis!