New paper sheds light on bacterial cell wall recycling

Sep 08, 2008

A new paper by a team of researchers led by Shahriar Mobashery, Navari Family Professor of Life Sciences at the University of Notre Dame, provides important new insights into the process by which bacteria recycle their cell wall.

The cell wall is a critically important entity for bacteria and essential for their survival. It is a rigid entity encasing the bacterium, and antibiotics are designed to interfere with disease processes by affecting its maturation. The function of antibiotics is to impair the cell wall, leading to bacterial death.

Scientists have determined that during bacterial growth a substantial amount of the parental cell wall is recycled. Although the recycling process has been known, its intricacies have not been well understood to date.

Mobashery's team synthesized pieces of the cell wall of the bacterium Escherichia coli in his laboratory and was able to use the synthetic wall components to observe the chemical reactions that take place during the recycling process.

The researchers found that a member of the lytic transglycosylases family of enzymes known as M1tB performed the requisite cell wall fragmentation on the synthetic sample of the cell wall from their laboratory. They also were able to measure the rate of the transformation by M1tB, determining that 14,000 pieces of the cell wall are processed by each molecule of M1tB in one bacterial generation.

The product of the M1tB reaction on the cell wall is the entity that initiates the recycling event, but when it diffuses out of the bacterium, it causes the onset of the pro-inflammatory events associated with bacterial infections.

The cell wall recycling study appears in the September issue of the Journal of the American Chemical Society.

Source: University of Notre Dame

Explore further: New molecule puts scientists a step closer to understanding hydrogen storage

add to favorites email to friend print save as pdf

Related Stories

Ex-Qualcomm exec pleads guilty to insider trading

1 hour ago

A former high-ranking executive of US computer chip giant Qualcomm pleaded guilty Monday to insider trading charges, including trades on a 2011 deal for Atheros Communications, officials said.

Media venture creates press litigation fund

2 hours ago

The media venture created by entrepreneur Pierre Omidyar said Monday it was establishing a fund to help defend journalists in cases involving freedom of the press.

'Moral victories' might spare you from losing again

2 hours ago

It's human nature to hate losing. Unfortunately, it's also human nature to overreact to a loss, potentially abandoning a solid strategy and thus increasing your chances of losing the next time around.

Recommended for you

A new approach to creating organic zeolites

Jul 24, 2014

Yushan Yan, Distinguished Professor of Engineering at the University of Delaware, is known worldwide for using nanomaterials to solve problems in energy engineering, environmental sustainability and electronics.

User comments : 0