New paper sheds light on bacterial cell wall recycling

Sep 08, 2008

A new paper by a team of researchers led by Shahriar Mobashery, Navari Family Professor of Life Sciences at the University of Notre Dame, provides important new insights into the process by which bacteria recycle their cell wall.

The cell wall is a critically important entity for bacteria and essential for their survival. It is a rigid entity encasing the bacterium, and antibiotics are designed to interfere with disease processes by affecting its maturation. The function of antibiotics is to impair the cell wall, leading to bacterial death.

Scientists have determined that during bacterial growth a substantial amount of the parental cell wall is recycled. Although the recycling process has been known, its intricacies have not been well understood to date.

Mobashery's team synthesized pieces of the cell wall of the bacterium Escherichia coli in his laboratory and was able to use the synthetic wall components to observe the chemical reactions that take place during the recycling process.

The researchers found that a member of the lytic transglycosylases family of enzymes known as M1tB performed the requisite cell wall fragmentation on the synthetic sample of the cell wall from their laboratory. They also were able to measure the rate of the transformation by M1tB, determining that 14,000 pieces of the cell wall are processed by each molecule of M1tB in one bacterial generation.

The product of the M1tB reaction on the cell wall is the entity that initiates the recycling event, but when it diffuses out of the bacterium, it causes the onset of the pro-inflammatory events associated with bacterial infections.

The cell wall recycling study appears in the September issue of the Journal of the American Chemical Society.

Source: University of Notre Dame

Explore further: Video: How did life on Earth begin?

add to favorites email to friend print save as pdf

Related Stories

The difficult question of Clostridium difficile

Aug 19, 2014

The bacterium Clostridium difficile causes antibiotic-related diarrhoea and is a growing problem in the hospital environment and elsewhere in the community. Understanding how the microbe colonises the hu ...

Foiling bugs that foil drugs

Aug 12, 2014

Every week, faculty members in the department of chemistry meet over lunch to discuss current literature in the field. The conversation at one of these meetings led Marcos Pires to what he calls a "crazy ...

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Recommended for you

Chemical biologists find new halogenation enzyme

16 hours ago

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents ...

Protein secrets of Ebola virus

22 hours ago

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

Protein courtship revealed through chemist's lens

22 hours ago

Staying clear of diseases requires that the proteins in our cells cooperate with one another. But, it has been a well-guarded secret how tens of thousands of different proteins find the correct dancing partners ...

User comments : 0