Thawing permafrost likely to boost global warming

Sep 01, 2008

The thawing of permafrost in northern latitudes, which greatly increases microbial decomposition of carbon compounds in soil, will dominate other effects of warming in the region and could become a major force promoting the release of carbon dioxide and thus further warming, according to a new assessment in the September 2008 issue of BioScience.

The study, by Edward A. G. Schuur of the University of Florida and an international team of coauthors, more than doubles previous estimates of the amount of carbon stored in the permafrost: the new figure is equivalent to twice the total amount of atmospheric carbon dioxide. The authors conclude that releases of the gas from melting permafrost could amount to roughly half those resulting from global land-use change during this century.

Schuur and his colleagues refine earlier assessments by considering complex processes that mix soil from different depths during melting and freezing of permafrost, which occur to some degree every year. They judge that over millennia, soil processes have buried and frozen over a trillion metric tons of organic compounds in the world's vast permafrost regions. The relatively rapid warming now under way is bringing the organic material back into the ecosystem, in part by turning over soil. Some effects of permafrost thawing can be seen in Alaska and Siberia as dramatic subsidence features called thermokarsts.

Schuur and his colleagues acknowledge many difficulties in estimating carbon dioxide emissions from permafrost regions, which hold more carbon in the Arctic and boreal regions of the Northern Hemisphere than in the Southern Hemisphere. Data are limited, and emissions are influenced by the amount of surface water, topography, wildfires, snow cover, and other factors. Thawing, although believed to be critical, is hard to model accurately.

Some warming-related trends in Arctic regions, such as the encroachment of trees into tundra, may cause absorption of carbon dioxide and thus partly counter the effects of thawing permafrost. But Schuur and colleagues' new assessment indicates that thawing is likely to dominate known countervailing trends.

Source: American Institute of Biological Sciences

Explore further: Small, fast, and crowded: Mammal traits amplify tick-borne illness

add to favorites email to friend print save as pdf

Related Stories

Sunlight, not microbes, key to CO2 in Arctic

Aug 21, 2014

The vast reservoir of carbon stored in Arctic permafrost is gradually being converted to carbon dioxide (CO2) after entering the freshwater system in a process thought to be controlled largely by microbial ...

Recommended for you

Asian stars enlisted to fight African rhino poaching

1 hour ago

Increasingly desperate South African conversationists are turning to a multi-national team of "rhino ambassadors" to try to end the scourge of poaching—and Vietnamese pop diva Hong Nhung has been recruited ...

For legume plants, a new route from shoot to root

1 hour ago

A new study shows that legume plants regulate their symbiotic relationship with soil bacteria by using cytokinins—signaling molecules— that are transmitted through the plant structure from leaves into the roots to control ...

A new quality control pathway in the cell

15 hours ago

Proteins are important building blocks in our cells and each cell contains millions of different protein molecules. They are involved in everything from structural to regulatory aspects in the cell. Proteins are constructed ...

User comments : 0