Biomarkers reveal our biological age

Aug 19, 2008
The telomeres (dyed red) form the end pieces of the chromosomes. As they age, they become shorter and some chromosomes eventually lose their ends completely. As a result, the cells are no longer able to divide. Image: K. Lenhard Rudolph

(PhysOrg.com) -- Not a day passes when we don’t get a little bit older. However, the exact processes involved in human aging are still puzzling. Scientists working with Lenhard Rudolph and Hong Jiang from the Max Planck Research Group for Stem Cell Aging in Ulm have now identified a group of proteins that reveal the biological age of a person. These biomarkers could be used in medicine to adapt therapies for older people to their individual biological age (PNAS, August 12, 2008).

Experience, wisdom and a certain inner serenity - according to popular belief, these are all characteristics that only come to us at a certain age. A growing percentage of our population can enjoy these positive aspects of aging, because medical progress and improvements in hygiene, the supply of food and living conditions have resulted in more and more people in industrial countries becoming increasingly older.

However, there is another side to this positive development: many older patients suffer from age-related illnesses and it is often difficult for doctors to decide which therapies an older person can cope with. This is due to the fact that chronological age does not necessarily correspond to biological age. "Many older people have a very good ability to regenerate, even better than some younger people," says Lenhard Rudolph, who headed the study. Together with his doctoral student, Hong Jiang, he searched for biomarkers that would provide him with some information about a person’s biological age. The two Max Planck researchers were supported in their search by Harald Mischak from the company Mosaiques Diagnostics.

The scientists took a very close look at the end pieces of human chromosomes, called telomeres. These are needed to keep the chromosome stable and, at the same time, to safeguard it. However, they are shortened by 50 to 200 base pairs every time the cell divides - in the course of aging, they become so short that they lose their protective function. As a result, the chromosomes become unstable and the cell irreversibly loses its ability to divide. Scientists have now been able to show that this is one cause of cell aging.

Rudolph and Jiang discovered that the shortening of the telomeres and DNA damage, which they brought about through radiation in their study, led to an overlapping reaction in the human cells. In both cases the affected cells release marker proteins. "One interesting observation was that the same proteins can be measured in human blood and that a significant increase can be shown to be associated with aging and age-related diseases," Rudolph sums up.

The results of their work not only provide meaningful markers for biological aging, but also corroborate the DNA damage hypothesis for human aging. The Max Planck researchers are hoping that their biomarkers will be of use in medical applications, which will make it possible to adapt therapies individually to patients’ biological age and thus achieve better results. There is, however, even more to the biomarkers, as Rudolph explains: "They could also be used to test behavioural intervention, food supplements and pharmacological therapies to delay the aging processes."

Citatoin: Hong Jiang, Eric Schiffer, Zhangfa Song, Jianwei Wang, Petra Zürbig, Kathrin Thedieck, Suzette Moes, Heike Bantel, Nadja Saal, Justyna Jantos, Meiken Brecht, Paul Jenö, Michael N. Hall, Klaus Hager, Michael P. Manns, Hartmut Hecker, Arnold Ganser, Konstanze Döhner, Andrzej Bartke, Christoph Meissner, Harald Mischak, Zhenyu Ju, and K. Lenhard Rudolph, Proteins induced by telomere dysfunction and DNA damage represent biomarkers of human aging and disease, PNAS August 12, 2008 vol. 105 no. 32 11299-11304

Provided by Max-Planck-Research Group on Stem Cell Aging

Explore further: Discovery reveals how bacteria distinguish harmful versus helpful viruses

add to favorites email to friend print save as pdf

Related Stories

'Zombie' bacteria are nothing to be afraid of

Aug 28, 2014

A cell is not a soap bubble that can simply pinch in two to reproduce. The ability to faithfully copy genetic material and distribute it equally to daughter cells is fundamental to all forms of life. Even ...

Flapping baby birds give clues to origin of flight

Aug 28, 2014

How did the earliest birds take wing? Did they fall from trees and learn to flap their forelimbs to avoid crashing? Or did they run along the ground and pump their "arms" to get aloft?

Orphaned children can do just as well in institutions

Aug 27, 2014

The removal of institutions or group homes will not lead to better child well-being and could even worsen outcomes for some orphaned and separated children, according to new findings from a three-year study across five low- ...

Evolutionary history of honeybees revealed by genomics

Aug 24, 2014

In a study published in Nature Genetics, researchers from Uppsala University present the first global analysis of genome variation in honeybees. The findings show a surprisingly high level of genetic divers ...

Recommended for you

DNA may have had humble beginnings as nutrient carrier

11 hours ago

New research intriguingly suggests that DNA, the genetic information carrier for humans and other complex life, might have had a rather humbler origin. In some microbes, a study shows, DNA pulls double duty ...

Central biobank for drug research

11 hours ago

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

No-take marine reserves a no-win for seahorses

12 hours ago

A UTS study on how seahorses are faring in no-take marine protected areas (MPAs) in NSW has revealed that where finishing is prohibited, seahorses aren't doing as well.

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

thales
not rated yet Aug 19, 2008
Ray Kurzweil oughta like that.
Wasabi
5 / 5 (2) Aug 19, 2008
First real world test? Chinese "woman's" gymnast team. ;)