Observing a Photon no Longer a Seek-and-Destroy Mission

Jun 02, 2004

A team of University of Queensland, Australia physicists has devised a sophisticated measurement system for single particles of light, or photons, enabling them to investigate fascinating behaviour in the quantum world.

In a world-first, the path of a single photon can now be measured without destroying the photon in the process.

One of the most surprising and unexpected aspects of quantum mechanics is the propensity for a photon to behave both like a particle and a wave.

The measurement developed at the Centre for Quantum Computer Technology within UQ’s School of Physical Sciences has enabled these wave-like and particle-like properties of a single photon to be observed simultaneously.

The breakthrough innovation by Drs Geoff Pryde, Jeremy O’Brien, Andrew White, Stephen Bartlett and Associate Professor Tim Ralph was recently published in the American Physical Society’s Physical Review Letters.

The quintessential experiment demonstrating the wave-like properties of light was English physicist Thomas Young’s c.1801 experiment where light was shone on a pair of holes in a screen. Interference between the two possible paths gave rise to an interference pattern on a second screen behind the holes — a wave-like phenomenon.

The remarkable thing is that this wave-like behaviour persists even when the light is so dim that only a single photon is present in the apparatus at any given time.

“That is unless the experimenter observes a particle-like property by measuring which path the photon took — in that case the interference disappears,” Dr O’Brien said.

In the UQ experiment, the researchers found that indeed the more particle-like the photon’s behaviour was, the less wave-like behaviour was observed, and vice versa.

The experiment shows once and for all that light is essentially fickle — sometimes behaving as particles and at others, like waves.

To measure the path of single photon, the team observed a second photon which carried away information about the first after the two interacted.

The experiment involved shining a powerful ultra-violet laser in to a special crystal to produce the two photons; a circuit of optical fibres; lenses and other optical elements; and normal destructive single photon detectors.

The original news release can be found on the University of Queensland web-site.

Explore further: New method for non-invasive prostate cancer screening

add to favorites email to friend print save as pdf

Related Stories

Mysteries of space dust revealed

Aug 29, 2014

The first analysis of space dust collected by a special collector onboard NASA's Stardust mission and sent back to Earth for study in 2006 suggests the tiny specks open a door to studying the origins of the ...

Breakthrough in light sources for new quantum technology

Aug 29, 2014

One of the most promising technologies for future quantum circuits are photonic circuits, i.e. circuits based on light (photons) instead of electrons (electronic circuits). First, it is necessary to create ...

When an exciton acts like a hole

Aug 27, 2014

(Phys.org) —When is an electron hole like a quasiparticle (QP)? More specifically, what happens when a single electron hole is doped into a two-dimensional quantum antiferromagnet? Quasiparticle phenomena ...

Recommended for you

New method for non-invasive prostate cancer screening

3 hours ago

Cancer screening is a critical approach for preventing cancer deaths because cases caught early are often more treatable. But while there are already existing ways to screen for different types of cancer, ...

How bubble studies benefit science and engineering

4 hours ago

The image above shows a perfect bubble imploding in weightlessness. This bubble, and many like it, are produced by the researchers from the École Polytechnique Fédérale de Lausanne in Switzerland. What ...

Famous Feynman lectures put online with free access

5 hours ago

(Phys.org) —Back in the early sixties, physicist Richard Feynman gave a series of lectures on physics to first year students at Caltech—those lectures were subsequently put into print and made into text ...

Single laser stops molecular tumbling motion instantly

9 hours ago

In the quantum world, making the simple atom behave is one thing, but making the more complex molecule behave is another story. Now Northwestern University scientists have figured out an elegant way to stop a molecule from ...

User comments : 0