DOE JGI Director highlights the genomics of plant-based biofuels in the journal Nature

Aug 13, 2008

Genomics is accelerating improvements for converting plant biomass into biofuel—as an alternative to fossil fuel for the nation's transportation needs, reports Eddy Rubin, Director of the U.S. Department of Energy Joint Genome Institute (DOE JGI), in the August 14 edition of the journal Nature. In "Genomics of cellulosic biofuels," Rubin lays out a path forward for how emerging genomic technologies will contribute to a substantially different biofuels future as compared to the present corn-based ethanol industry—and in part mitigate the food-versus-fuel debate.

"The Apollo moon shot and the Human Genome Project rallied support for massive R&D efforts that created the capabilities to overcome obstacles that were not contemplated at the outset of these initiatives," says Rubin. "Similarly, today's barriers to improving biofuels are significant, but genetics and genomics can catalyze progress towards delivering, in the not-too-distant future, economically-viable and more socially acceptable biofuels based on lignocellulose."

While Rubin acknowledges that this strategy is in its infancy, rapid progress is being made.

"Over the past 10,000 years, wild plant species were selected for their desirable traits resulting in today's highly productive food crops. We simply don't have thousands of years in the face of the energy and climate challenges, so by applying the power of genomics to these problems, we are seeking to speed up the domestication of energy crops and the technologies for converting them to suitable biofuels as a more carbon-neutral approach to meeting part of our transportation needs."

In the Nature Review, Rubin describes the processes entailed in biofuel production from lignocellulose: the harvesting of biomass, pretreatment and saccharification, which results in the deconstruction of cell wall polymers into component sugars, and then the conversion of those sugars into biofuels through fermentation. Each step, he says, offers an opportunity for genomics to play a significant role.

"With the data that we are generating from plant genomes we can home in on relevant agronomic traits such as rapid growth, drought resistance, and pest tolerance, as well as those that define the basic building blocks of the plants cell wall—cellulose, hemicellulose and lignin. Biofuels researchers are able to take this information and design strategies to optimize the plants themselves as biofuels feedstocks—altering, for example, branching habit, stem thickness, and cell wall chemistry resulting in plants that are less rigid and more easily broken down."

For microbial biomass breakdown, Rubin says that many candidates have already been identified. These include Clostridia species for their ability to degrade cellulose, and fungi that express genes associated with the decomposition of the most recalcitrant features of the plant cell wall, lignin, the phenolic "glue" that imbues the plant with structural integrity and pest resistance. The white rot fungus Phanerochaete chrysosporium produces unique extracellular oxidative enzymes that effectively degrade lignin by gaining access through the protective matrix surrounding the cellulose microfibrils of plant cell walls.

Another fungus, the yeast Pichia stipitis, ferments the five-carbon "wood sugar" xylose abundant in hardwoods and agricultural harvest residue. Rubin says that Pichia's recently sequenced genome has revealed insights into the metabolic pathways responsible for this process, guiding efforts to optimize this capability in commercial production strains. Pathway engineering promises to produce a wider variety of organisms able to ferment the full repertoire of sugars derived from cellulose and hemicellulose and tolerate higher ethanol concentrations to optimize fuel yields.

Rubin also touches on the emerging technology of metagenomics—characterizing, without the need for laboratory culture, the metabolic profile of organisms residing in an environmental sample—for the identification of enzymes suitable for industrial-scale biofuel production.

"Using this prospecting technique, we can survey the vast microbial biodiversity to gain a better picture of the metabolic potential of genes and how they can be enlisted for the enzymatic deconstruction of biomass and subsequent conversion to high energy value fuels."

As an example, Rubin cites an analysis of the hindgut contents of nature's own bioreactor, the termite, (published in Nature (450, 560-565 [22 November 2007]), which has yielded more than 500 genes related to the enzymatic deconstruction of cellulose and hemicellulose.

The Nature Review goes on to list the feedstock genomes, microbial "biomass degraders," and "fuel producers" completed or in progress. These include the first tree genome completed—that of the poplar Populus trichocarpa and other plants in the sequencing queue, such as soybean, switchgrass, sorghum, eucalyptus, cassava, and foxtail millet. In addition, Rubin points to oil-producing algae as an alternative source for biodiesel production—with the alga Chlamydomonas reinhardtii, as just one of several algal species that has been characterized for their ability to efficiently capture and convert sunlight into energy.

"Given the daunting magnitude of fossil fuel used for transportation, we will likely have to draw from several different sources to make an appreciable impact with cellulosic biofuels, all of which will in some significant way will be informed by genomics," says Rubin.

"Toward this end, rapid new sequencing methods and the large-scale genomics previously applied to sequencing the human genome are being exploited by bioenergy researchers to design next-generation biofuels, higher-chain alcohols and alkanes, with higher energy content than petroleum and more adaptable to existing infrastructure."

Source: DOE/Joint Genome Institute

Explore further: Free the seed: OSSI nurtures growing plants without patent barriers

add to favorites email to friend print save as pdf

Related Stories

First volume of microbial encyclopedia published

Dec 23, 2009

The Earth is estimated to have about a nonillion (1030) microbes in, on, around, and under it, comprised of an unknown but very large number of distinct species. Despite the widespread availability of microbi ...

Study shows how algae may cope with environmental change

Apr 09, 2009

Scientists from two-dozen research organizations led by the U.S. Department of Energy (DOE) Joint Genome Institute (JGI) and the Monterey Bay Aquarium Research Institute (MBARI) have decoded genomes of two ...

Recommended for you

Plants with dormant seeds give rise to more species

Apr 18, 2014

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Researchers successfully clone adult human stem cells

Apr 18, 2014

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

User comments : 0

More news stories

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.