Scientists uncover the key to controlling how stem cells develop

Aug 08, 2008

(PhysOrg.com) -- The results of a new study involving a McMaster University researcher provide insight into how scientists might control human embryonic stem cell differentiation.

In collaboration with researchers from SickKids and Mount Sinai hospitals, Dr. Jon Draper, a scientist in the McMaster Stem Cell and Cancer Research Institute, focused on producing early endoderm cells from human embryonic stem cells.

The research is published in the August issue of Cell Stem Cell, a Cell Press journal.

Human embryonic stem cells are the building blocks for every organ and tissue in the body. Aside from their ability to self renew, they are also capable of differentiating, or turning into, any type of cell in the body, including bone, muscle and blood cells.

An endoderm is the innermost of three primary layers of the human embryo. The endoderm forms certain organs in the embryo such as the respiratory and digestive tracts, the lungs, liver and pancreas.

The researchers focused on generating stable progenitor cells capable of producing all endoderm cell types. The cells were able to maintain their distinct profiles through many stages of cell culture without losing their ability to self renew.

One of the biggest barriers preventing the clinical use of human embryonic stem cells is the inability to effectively control the process of cellular differentiation. This study provides a clear picture of how the early steps of endoderm tissue differentiation might be controlled.

Dr. Cheryle Seguin and Dr. Janet Rossant, both of the Developmental and Stem Cell Biology program at SickKids, conducted the research along with Draper and Dr. Andras Nagy, of Mount Sinai Hospital.

Draper is an assistant professor in the Department of Pathology and Molecular Medicine. He joined McMaster University in February.

Provided by McMaster University

Explore further: Genetic safety switches could help curb potential bioterror risks

add to favorites email to friend print save as pdf

Related Stories

Twist1: Complex regulator of cell shape and function

Jan 20, 2015

Transcription factor Twist1 is involved in many processes where cells change shape or function. Thereby, Twist1 is crucial for embryonic development, but has also been implicated in cancer progression. However, the precise ...

Recommended for you

Researchers identify new mechanism to aid cells under stress

4 hours ago

A team of biologists from NYU and Harvard has identified new details in a cellular mechanism that serves as a defense against stress. The findings potentially offer insights into tumor progression and neurodegenerative diseases, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.