Scientists uncover the key to controlling how stem cells develop

Aug 08, 2008

(PhysOrg.com) -- The results of a new study involving a McMaster University researcher provide insight into how scientists might control human embryonic stem cell differentiation.

In collaboration with researchers from SickKids and Mount Sinai hospitals, Dr. Jon Draper, a scientist in the McMaster Stem Cell and Cancer Research Institute, focused on producing early endoderm cells from human embryonic stem cells.

The research is published in the August issue of Cell Stem Cell, a Cell Press journal.

Human embryonic stem cells are the building blocks for every organ and tissue in the body. Aside from their ability to self renew, they are also capable of differentiating, or turning into, any type of cell in the body, including bone, muscle and blood cells.

An endoderm is the innermost of three primary layers of the human embryo. The endoderm forms certain organs in the embryo such as the respiratory and digestive tracts, the lungs, liver and pancreas.

The researchers focused on generating stable progenitor cells capable of producing all endoderm cell types. The cells were able to maintain their distinct profiles through many stages of cell culture without losing their ability to self renew.

One of the biggest barriers preventing the clinical use of human embryonic stem cells is the inability to effectively control the process of cellular differentiation. This study provides a clear picture of how the early steps of endoderm tissue differentiation might be controlled.

Dr. Cheryle Seguin and Dr. Janet Rossant, both of the Developmental and Stem Cell Biology program at SickKids, conducted the research along with Draper and Dr. Andras Nagy, of Mount Sinai Hospital.

Draper is an assistant professor in the Department of Pathology and Molecular Medicine. He joined McMaster University in February.

Provided by McMaster University

Explore further: EU, others: Catch plans for Bluefin tuna threaten recovery

add to favorites email to friend print save as pdf

Related Stories

New study shows safer methods for stem cell culturing

7 hours ago

A new study led by researchers at The Scripps Research Institute (TSRI) and the University of California (UC), San Diego School of Medicine shows that certain stem cell culture methods are associated with increased DNA mutations. ...

Appeals court considering warrantless cellphone tracking

Feb 24, 2015

(AP)—Now that the cellphone in your pocket can be used to track your movements, federal appeals judges in Atlanta are considering whether investigators must get a search warrant from a judge to obtain cellphone tower tracking ...

Engineers put the 'squeeze' on human stem cells

Feb 10, 2015

After using optical tweezers to squeeze a tiny bead attached to the outside of a human stem cell, researchers now know how mechanical forces can trigger a key signaling pathway in the cells.

Recommended for you

A molecular compass for bird navigation

5 hours ago

Each year, the Arctic Tern travels over 40,000 miles, migrating nearly from pole to pole and back again. Other birds make similar (though shorter) journeys in search of warmer climes. How do these birds manage ...

Salish Sea seagull populations halved since 1980s

6 hours ago

The number of seagulls in the Strait of Georgia is down by 50 per cent from the 1980s and University of British Columbia researchers say the decline reflects changes in the availability of food.

Cultivation of microalgae via an innovative technology

6 hours ago

Preliminary laboratory scale studies have shown consistent biomass production and weekly a thick microalgal biofilm could be harvested. A new and innovative harvesting device has been developed for ALGADISK able to directly ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.