Olfactory Fine-Tuning Helps Fruit Flies Find Their Mates

Jul 30, 2008
Normal fruit flies (left) quickly found a female at the center of the testing arena, whilst flies unable to calibrate their olfactory systems (right) wandered aimlessly. Track color depicts time beginning with violet and ending with red. Credit: Cory Root/UCSD

Fruit flies fine-tune their olfactory systems by recalibrating the sensitivity of different odor channels in response to changing concentrations of environmental cues, a new study has shown. Disable this calibration system, and flies have trouble finding a mate, the researchers found.

Just like overly bright light can wash out a photographic image, strong smells can overwhelm the olfactory system and eliminate an animal's ability to detect subtle differences, such as changes in concentration that would allow it to track a scent.

Now neurobiologists at UC San Diego, Stockholm University and the National Institute of Child Health and Human Development have evidence that the fly nervous system can dampen its response to intense smells to prevent strong signals from overloading the circuits, they report in the July 31 issue of Neuron.

"We found a feedback mechanism in the olfactory system," said Jing Wang, assistant professor of biology at UCSD and senior author of the paper. "This system may be useful for the fly to navigate the olfactory landscape. Odor concentrations can change very dramatically, and this is how they deal it."

Chemical Calibration

Olfactory neurons selectively respond to particular chemicals, such as ethyl hexanoate, which smells like ripe bananas, or food to a fruit fly.

"We applied natural odors to the antennae, odors that the fly would normally smell," said Cory Root, a graduate student in biology at UCSD and first author of the paper.

When Root wafted concentrated banana smell onto the flies' antennae, he found increases in signaling by a molecule called the GABAB receptor, which helps to inhibit neurons from sending signals, and he confirmed that cells with increased signaling by GABAB receptors released neurotransmitter less easily.

Other strong fruity smells and a male pheromone, a chemical sex attractant, also shifted subsequent neural responses to those stimulants, adjusting the response range to detect differences between higher levels of these odors.

But carbon dioxide, a stress signal in flies, shifted the response very little. "It's like evolution has taken advantage of the system to adjust some channels up and down without affecting other channels," Wang said. "If you want high sensitivity to CO2 then you can eliminate the feedback receptor in those neurons. For other odors such as pheromone, which is important for finding other flies, a good tracking system is needed."

Sensory Overload

When the team knocked down levels of the receptor molecule within the specific olfactory neurons tuned to pheromones using molecular biological techniques they found that the fly neural system failed to adjust to chemical overloads. And without the fine tuning, male flies had difficulty finding females.

Most normal flies let loose in an area with an immobilized female quickly locate her and attempt to mate, even in the dark. But when Root and colleagues disabled the calibration system, most males wandered aimlessly.

"Flies that lack inhibition in their pheromone sensing neurons often fail to find the female," Root said. "The control flies are strikingly different. Soon after they get accustomed to the new arena they zoom in on the female and immediately start courting her."

Only half as many of the disabled flies he tested made contact with the female within the 30 minute testing period, despite being confined to a plastic dish only 40 millimeters wide.

One-minute video of experimental and control flies available: www.biology.ucsd.edu/scicomm/video/flytracks.mov

Source: University of California - San Diego

Explore further: Brain structures devoted to learning, memory highly conserved in animal kingdom, suggesting common evolutionary origin

add to favorites email to friend print save as pdf

Related Stories

From strangers to mates in 15 minutes

Nov 06, 2014

Ah, to be a fruit fly. No meddling matchmakers, creepy dates or frog kissing. Females process the sights, smell, sounds and touch of love to choose Mr. Right in 15 minutes. Researchers at Case Western Reserve ...

How female fruit flies know when to say 'yes'

Oct 07, 2014

A fundamental question in neurobiology is how animals, including humans, make decisions. A new study publishing in the open access journal PLOS Biology on October 7 reveals how fruit fly females make a very ...

Recommended for you

Discovery in the fight against antibiotic-resistant bacteria

1 hour ago

For four years, researchers at Universite catholique de Louvain have been trying to find out how bacteria can withstand antibiotics, so as to be able to attack them more effectively. These researchers now understand how one ...

Stem cells born out of indecision

1 hour ago

Scientists at the University of Copenhagen have gained new insight into embryonic stem cells and how blocking their ability to make choices explains why they stay as stem cells in culture. The results have just been published ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.