Being a control freak aids dividing cells

Jul 28, 2008

Micromanagers may generate resentment in an office setting, but they get results in your body. New data indicate that a dividing cell takes micromanagement to the extreme, tagging more than 14,000 different sites on its proteins with phosphate, a molecule that typically serves as a signal for a variety of biological processes.

This preponderance of signals suggests that the cell may become a control freak during the division process, regulating each of its parts, no matter how obscure. It may take extreme measures to ensure that each "daughter" receives a full complement of cellular material. The new data—published online the week of July 28 in PNAS—open unexplored frontiers to developmental biologists, cancer researchers, and others who study cell growth and proliferation.

"There's a massive wave of phosphorylation in dividing cells, much bigger than anyone expected," says HMS associate professor of cell biology Steven Gygi, who is corresponding author on the study. "This discovery implies that we've severely underestimated the scope of regulation in cell division for decades, which has implications for our understanding of a wide-range of diseases and developmental defects linked to the cell cycle, from cancer to holes in the heart."

Traditionally, researchers probed cell division by zooming in on a particular gene or protein and tracing its interactions. But Gygi took a different approach. A leader in the emerging field of "proteomics," which involves looking at thousands of proteins at once, his team used an instrument called a mass spectrometer to essentially take a wide-angle shot of dividing cells, capturing information that narrow studies missed. The panoramic view revealed a surprising level of signaling activity throughout the cell.

"An enormous number of proteins—more than 1,000—became highly phosphorylated during cell division, some more than 10 times," says postdoctoral researcher Noah Dephoure, who ran the experiment.

In collaboration with Chunshui Zhou, a researcher in HMS professor of genetics Stephen Elledge's lab, Dephoure worked with human cells, dividing them into two dishes. (The cells used are HeLa cells, which, while derived from a tumor, are used for many experiments because they thrive in culture. It's possible that some of the signaling events reported here are unique to these cells.) The first dish received nutrients with "heavy" carbon atoms—more massive than their "light" counterparts, which are abundant in nature. The second dish received normal nutrients, plus a toxic chemical to freeze the cells mid-division.

Dephoure and Zhou mixed all the cells together, killed them, chopped their constituent proteins—which were preserved—into small pieces called peptides, and fed these into a mass spectrometer. The instrument distinguished between otherwise identical peptides, based on the presence of "heavy" or "light" atoms, generating a ratio for each peptide. Dephoure paid particular attention to the ratios for peptides containing phosphate groups and uncovered major differences between the two populations of cells.

The dividing cells harbored a staggering number of regulated phosphate groups in unexpected places.

Gygi hypothesizes that the cell uses phosphorylation to break down every last protein complex before dividing. "Maybe the cell does something akin to putting Humpty Dumpty back together again at the end," he says.

"The massive number of phosphorylation changes in cell division strongly suggests that it involves a massive reorganization of the cell," adds HMS Department of Systems Biology chair Marc Kirschner, who was not involved in the study.

"Or the cell might phosphorylate everything to ensure that it hits a few key targets critical for proper division," says Dephoure. Under this scenario, extraneous phosphorylation may cloud the picture.

Armed with the team's list of proteins and phosphorylation sites, labs can conduct additional experiments to resolve this debate. They can investigate particular phosphorylation events and determine which ones contribute to successful regulation of cell division. Some may present therapeutic targets for patients with cell cycle diseases such as cancer.

"This study demonstrates how much a broad systematic approach to protein modification can facilitate experiments in the cell cycle field," says Kirschner. "We will be reaping results from this study for years ahead."

Source: Harvard Medical School

Explore further: Two new iguanid lizard species from the Laja Lagoon, Chile

Related Stories

How to make trees grow bigger and quicker

Apr 16, 2015

Scientists at The University of Manchester have discovered a way to make trees grow bigger and faster, which could increase supplies of renewable resources and help trees cope with the effects of climate change.

The two faces of cellular forgetfulness

Apr 13, 2015

Ludwig Maximilian University researchers have monitored how epigenetic information is transmitted to daughter cells during cell division and determined when the cell's developmental memory is re-established.

Hormones that guide root growth rates revealed

Apr 09, 2015

A plant's roots grow and spread into the soil, taking up necessary water and minerals. The tip of a plant's root is a place of active cell division followed by cell elongation, with different zones dedicated ...

Researchers clarify how DNA damage signaling works

Mar 31, 2015

The DNA molecule is chemically unstable, giving rise to DNA lesions of various kinds. That is why DNA damage detection, signaling and repair, collectively known as the DNA damage response, are needed. The ...

Recommended for you

Two new iguanid lizard species from the Laja Lagoon, Chile

39 minutes ago

A team of Chilean scientists discover two new species of iguanid lizards from the Laja Lagoon, Chile. The two new species are believed to have been long confused with other representatives of the elongatus-kriegi ...

New 3-D method improves the study of proteins

1 hour ago

Researchers have developed a new computational method called AGGRESCAN3D which will allow studying the 3D structure of folded globular proteins and substantially improve the prediction of any propensity for ...

ANZAC grevillea hybrid marks centenary celebrations

1 hour ago

Through an intense breeding program of native flora, Kings Park botanists have provided the Western Australian RSL with a commemorative grevillea (Proteaceae) in time for the Anzac Centenary.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet Jul 30, 2008
Please continue your excellent work! You are near the root causes of cancer! Slow mitosis and you may have the cure!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.