Structure of hepatitis B virus mapped

Jul 28, 2008

Using a newly developed method, Utrecht University researchers have mapped the structure and composition of the hepatitis B virus. The researchers were able to map the structure by spraying the virus.

Their research brings us a step closer to understanding and combating hepatitis B infection. The method can also be used to analyse other viruses. The results of the search were recently published in two renowned scientific journals: Proceedings of the National Academy of Sciences USA and Angewandte Chemie International Edition England.

To better understand and deal with viral infections, it is essential to examine the virus carefully at molecular level. However, the virus is too large to do this using the standard methods. For that reason, especially for this project, Utrecht University researcher Charlotte Uetrecht developed a modified mass spectrometer that can spray the virus intact. She did this together with Prof. Albert Heck (Utrecht University) and researchers from America and Amsterdam.

Using the modified mass spectrometer, the researchers looked at the structure and composition of the hepatitis B virus, a virus that causes severe liver ailments in humans. With the spectrometer, the researchers not only observed various forms of the virus, but they also saw the virus’ molecular structure. This makes it possible in the future to block the production of viruses, and in that way to combat viral infection. The technology developed can also be used to map and identify other viruses, such as viruses that can potentially be used in weaponised form by terrorists.

Mass spectrometry is a technology with which scientists can identify molecules. Among other things, this technology is used in dope testing and for identifying paint traces in forensic investigations. Mass spectrometry works particularly well with smaller molecules. Viruses however are a million times greater in mass. To be able to use mass spectrometry nevertheless, researchers spray the virus with water through a high-tension electric charge. This technique separates the viruses from the water, enabling researchers to examine them individually. This spraying process is comparable to the transmission of a cold virus by sneezing.

Source: Utrecht University

Explore further: Scientists develop pioneering new spray-on solar cells

add to favorites email to friend print save as pdf

Related Stories

SR Labs research to expose BadUSB next week in Vegas

16 hours ago

A Berlin-based security research and consulting company will reveal how USB devices can do damage that can conduct two-way malice, from computer to USB or from USB to computer, and can survive traditional ...

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

Recommended for you

Scientists develop pioneering new spray-on solar cells

28 minutes ago

(Phys.org) —A team of scientists at the University of Sheffield are the first to fabricate perovskite solar cells using a spray-painting process – a discovery that could help cut the cost of solar electricity.

User comments : 0