First Battery Based on 'Nanograss'

Sep 28, 2004

mPhase Technologies and Lucent Technologies today announced a major milestone for future commercialization of a nanotechnology-based battery. Lab tests, which have been replicated, proves it is possible to fabricate nanotech-based batteries, which can store and generate electric current. The project is based on a joint program with Bell Labs, the R&D arm of Lucent Technologies.
The prototype battery is based on a Bell Labs discovery that liquid droplets of electrolyte will stay in a dormant state atop microscopic structures called "nanograss" until stimulated to flow, thereby triggering a reaction producing electricity.

The prototype demonstration was conducted at Lucent's New Jersey Nanotechnology Consortium (NJNC), one of the world's most advanced design, development and fabrication facilities for nanotechnology, based at Bell Labs in Murray Hill, N.J. The companies had previously announced a broad agreement to develop and commercialize this technology.

The prototype battery is based on a Bell Labs discovery that liquid droplets of electrolyte will stay in a dormant state atop microscopic structures called "nanograss" until stimulated to flow, thereby triggering a reaction producing electricity. The experiment proved that this super-hydrophobic effect of liquids can permit precise control and activation of the batteries on demand.

Future batteries based on this technology have the potential to deliver far longer shelf life and better storage capacity than existing battery technology. Potential initial applications for this technology may include defense, industrial, healthcare and consumer electronics. mPhase is also targeting the nanobattery for use in a technically-improved, lighter weight battery design.

"The theory behind the nanobattery is now proven in practical terms, and we are delighted to proceed with development of prototypes to meet initial customer requirements," said Ronald A. Durando, CEO of mPhase Technologies. "Considering that we have come this far in only six months of collaboration with Bell Labs and the NJNC illustrates the solidity of this technical approach and bodes well for practical commercialization."

"The use of nanograss for battery technology is an exciting development for the fields of nanotechnology and power management," said Dave Bishop, vice president of nanotechnology research at Bell Labs and president of the New Jersey Nanotechnology Consortium. "In general, improvements in battery technology have come very slowly in comparison to accelerating development cycles such as Moore's Law in semiconductors. We believe nanotech, specifically nanograss technology, will allow us to make a significant leap forward in battery capabilities."

mPhase and Lucent announced an agreement in March 2004, under which mPhase plans to commercialize the nanobattery under license from Lucent. mPhase projects its nanobattery to be commercially available in 12-15 months, and plans to produce the technology packaged in various configurations. A primary development goal is to create a battery that could have a shelf life lasting decades, yet can be activated instantaneously.

Source: Lucent

Explore further: 'Nanomotor lithography' answers call for affordable, simpler device manufacturing

add to favorites email to friend print save as pdf

Related Stories

Fighting the global water scarcity issue

2 hours ago

According to the World Water Management Institute, over one-third of the human population is affected by water scarcity. If nothing is done to prevent it, an estimated 1.8 billion people will be living in ...

Drive system saves space and weight in electric cars

Oct 17, 2014

Siemens has developed a solution for integrating an electric car's motor and inverter in a single housing. Until now, the motor and the inverter, which converts the battery's direct current into alternating ...

Recommended for you

Tiny carbon nanotube pores make big impact

23 hours ago

A team led by the Lawrence Livermore scientists has created a new kind of ion channel based on short carbon nanotubes, which can be inserted into synthetic bilayers and live cell membranes to form tiny pores ...

Nanosafety research: The quest for the gold standard

Oct 29, 2014

Empa toxicologist Harald Krug has lambasted his colleagues in the journal Angewandte Chemie. He evaluated several thousand studies on the risks associated with nanoparticles and discovered no end of shortc ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.