For Clean Water: Chlorine-tolerant membranes for desalination

Jul 22, 2008

(PhysOrg.com) -- One of the most pressing needs of our time is safe, sustainable access to fresh water. The dominant technology for desalination of water is membrane-based desalination, an energy-efficient, environmentally friendly process. Scientists have now developed a new membrane material that, unlike current polyamide membranes, tolerates chlorinated water.

A team headed by Ho Bum Park (University of Ulsan, South Korea), Benny D. Freeman (University of Texas at Austin, USA), and James E. McGrath (Virginia Polytechnic Institute, Blacksburg, USA) reported in the journal Angewandte Chemie on a membrane that is made of sulfonated copolymers.

Chlorine is the most commonly used biocide in water treatment because it is both inexpensive and very effective in small amounts. The disinfection of water headed into membrane-based desalination facilities is crucial to hinder the growth of biofilms, which reduce efficiency.

Polyamide membranes do not tolerate chlorine. This means that the water must first be treated with chlorine, and then the chlorine must be removed before the water comes into contact with the membrane. Before being fed into the supply network, the water must be chlorinated again. This is a complex, costly procedure.

Membranes made of polysulfone, a sulfur-containing engineering thermoplastic, are being considered as an alternative. They are highly tolerant to chlorine. However, polysufones are hydrophobic and do not allow enough water to pass through them. By attaching additional charged sulfonic acid groups, the researchers hoped to make the polymer more water friendly without affecting its other valuable properties.

Whereas previous efforts focused on modification of the polysulfone after polymerization, the team now took a different route: the simultaneous polymerization of disulfonated monomers (a building block containing two hydrophilic sulfonic acid groups) and another type of monomer led to the formation of a copolymer.

Undesired side-reactions, cross-linking or breaks in the polymer chains do not occur by this method. Most importantly, it is possible to precisely control how many water-friendly, charged sulfonic acid groups are in the polymer chain. This allows the targeted generation of chlorine-resistant membranes whose permeability for water and salts can be tailored to specific applications (e.g., nanofiltration, reverse osmosis).

Citation: Benny D. Freeman, Highly Chlorine-Tolerant Polymers for Desalination, Angewandte Chemie International Edition 2007, 46, No. 32, 6019–6024, doi: 10.1002/anie.200800454

Provided by Angewandte Chemie

Explore further: Team discovers evolutionary mechanism that allows bacteria to resist antibiotics

add to favorites email to friend print save as pdf

Related Stories

Wires turn salt water into freshwater

Jun 08, 2012

(Phys.org) -- As a rising global population and increasing standard of living drive demand for freshwater, many researchers are developing new techniques to desalinate salt water. Among them is a team of scientists ...

Time is now for a new revolution in urban water systems

Feb 19, 2014

As California grapples with what state water officials have called a drought of "epic proportions," UC Berkeley urban-water expert David Sedlak has been watching for signs that people are ready for a water ...

Recommended for you

Cell imaging gets colorful

3 hours ago

The detection and imaging of protein-protein interactions in live cells just got a lot more colourful, thanks to a new technology developed by University of Alberta chemist Dr. Robert E. Campbell and his ...

New strategy to combat 'undruggable' cancer molecule

3 hours ago

Three of the four most fatal cancers are caused by a protein known as Ras; either because it mutates or simply because it ends up in the wrong place at the wrong time. Ras has proven an elusive target for ...

Chemists find a way to unboil eggs

5 hours ago

UC Irvine and Australian chemists have figured out how to unboil egg whites – an innovation that could dramatically reduce costs for cancer treatments, food production and other segments of the $160 billion ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Wasabi
not rated yet Jul 22, 2008
hmm, it's interesting research but using CNT's strikes me as a more efficient (and cost efficient) alternative as this article http://www.techno...977/?a=f describes.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.