Predicting the distribution of creatures great and small

Jul 17, 2008

In studying how animals change size as they evolve, biologists have unearthed several interesting patterns. For instance, most species are small, but the largest members of a taxonomic group -- such as the great white shark, the Komodo dragon, or the African elephant – are often thousands or millions of times bigger than the typical species. Now for the first time two SFI researchers explain these patterns within an elegant statistical framework.

"The agreement between our model and real-world data is surprisingly close," says SFI Postdoctoral Fellow Aaron Clauset, who, along with SFI Professor Douglas Erwin, presented the findings in a July 18 Science paper.

In Clauset and Erwin's model, descendant species are close in size to their ancestors, but with some amount of random variation. But, this variation is constrained, first by a hard limit on how small a species can become, due to physiological constraints, and second by a soft limit on how large a species can become before becoming extinct. After millions of virtual years of new species evolving and old species becoming extinct, the model reaches an equilibrium in which the tendency of species to grow larger is offset by their tendency to become extinct more quickly.

By using fossil data on extinct mammals from up to 60 million years ago to specify the form of the model, the researchers showed that this evolutionary process accurately reproduces the diversity of 4,000 mammal species from the last 50,000 years.

"The model is remarkably compact, " says Aaron. "It also omits many traditional ideas from evolution and ecology, such as population dynamics or species interactions, yet makes very accurate predictions."

Because species size is fundamentally related to so many other characteristics like metabolism, life span and habitat, the researchers' simple evolutionary model offers support to idea that some aspects of evolutionary and ecological theory can be unified.

Source: Santa Fe Institute

Explore further: India's ancient mammals survived multiple pressures

add to favorites email to friend print save as pdf

Related Stories

Climate change impacts tuatara population

Apr 09, 2014

A new study involving researchers from Victoria University of Wellington shows climate change could ultimately result in the extinction of a population of tuatara.

Why bacteria are beautiful, and why we need them

Mar 26, 2014

For every one of the 7 billion people on Earth, up to 10 times that many bacteria have taken up residence in and on them. "We provide a nice home for them," said Nobel laureate Sir Richard Roberts, who was ...

Recommended for you

Biologists help solve fungi mysteries

3 hours ago

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

User comments : 0

More news stories

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Net neutrality balancing act

Researchers in Italy, writing in the International Journal of Technology, Policy and Management have demonstrated that net neutrality benefits content creator and consumers without compromising provider innovation nor pr ...