Discovery of key malaria proteins could mean sticky end for parasite

Jul 09, 2008

Scientists funded by the Wellcome Trust have identified a key mechanism that enables malaria-infected red blood cells to stick to the walls of blood vessels and avoid being destroyed by the body's immune system. The research, published today in the journal Cell, highlights an important potential new target for anti-malarial drugs.

Malaria is one of the world's biggest killers, killing over a million people every year, mainly children and pregnant women in Africa and south east Asia. It is caused by the malaria parasite, which is injected into the bloodstream from the salivary glands of infected mosquitoes. There are a number of different species of parasite, but the deadliest is the Plasmodium falciparum parasite, which accounts for 90% of deaths from malaria.

The malaria parasite infects healthy red blood cells, where it reproduces, producing up to thirty-two new daughter parasites. The parasite secretes a "glue", known as PfEMP1, which travels to the surface of the infected red blood cells, leading to the formation of the knobs on the surface of the cells. The cells become sticky and adhere to the walls of the blood vessels. This prevents the cells being flushed through the spleen, where the parasites would be destroyed by the body's immune system, but also restricts blood supply to vital organs.

Now, an international collaboration of scientists has identified eight new proteins that transport the P. falciparum parasite's "glue" to the surface of the infected red blood cells. The researchers, led by Professor Alan Cowman from the Walter and Eliza Hall Institute of Medical Research in Melbourne, Australia, have shown that removing just one of these proteins prevents the infected red blood cells from sticking to the walls of the blood vessels.

"These findings greatly enhance our understanding of how the malaria parasite commandeers the red blood cell for its own survival and avoids our immune defences," says Professor Cowman. "They also suggest that a drug that targets the 'stickiness' proteins could be an effective treatment for malaria."

Malaria is currently treated using drugs that kill the parasites. However, as the parasites evolve, they have become increasingly resistant to existing treatments such as chloroquine and mefloquine, and there is some evidence of increasing resistance against even the most effect and newest treatments, artemisinin derivatives such as artesunate.

"Malaria parasites are evolving, making our current treatments increasingly less effective," says Professor Alister Craig from the Liverpool School of Tropical Medicine, who collaborated on the project. "This suggests we need to approach the problem using a different strategy. A drug which prevents disease rather than killing the parasite might be important because it could retain natural inoculation in the patient, limiting damage caused by the parasite and providing protection from further infection."

The research was carried out by interfering with the function of specific genes on a scale not previously attempted in the malaria parasite. By blocking or "knocking out" the function of these genes the team was able to identify those important for allowing the parasite to stick to the walls of blood vessels.

Source: Wellcome Trust

Explore further: Brain circuit differences reflect divisions in social status

add to favorites email to friend print save as pdf

Related Stories

An easier way to manipulate malaria genes

Aug 11, 2014

Plasmodium falciparum, the parasite that causes malaria, has proven notoriously resistant to scientists' efforts to study its genetics. It can take up to a year to determine the function of a single gene, ...

Tilted acoustic tweezers separate cells gently

Aug 25, 2014

Precise, gentle and efficient cell separation from a device the size of a cell phone may be possible thanks to tilt-angle standing surface acoustic waves, according to a team of engineers.

Malaria: Blood cells behaving badly

Jun 10, 2014

All the billions of flat, biconcave disks in our body known as red blood cells (or erythrocytes) make three basic, tumbling-treadmill-type motions when they wend their way through the body's bloodstream ferrying ...

The 'yin and yang' of malaria parasite development

Jul 09, 2014

Scientists searching for new drug and vaccine targets to stop transmission of one of the world's deadliest diseases believe they are closer than ever to disrupting the life-cycle of this highly efficient ...

Recommended for you

An uphill climb for mountain species?

10 hours ago

A recently published paper provides a history of scientific research on mountain ecosystems, looks at the issues threatening wildlife in these systems, and sets an agenda for biodiversity conservation throughout ...

Extinctions during human era worse than thought

12 hours ago

It's hard to comprehend how bad the current rate of species extinction around the world has become without knowing what it was before people came along. The newest estimate is that the pre-human rate was ...

User comments : 0