Will our future brains be smaller?

Jul 09, 2008
Will our future brains be smaller?

The speed at which we react to threatening situations can have life or death implications. In the more primitive past, it could have meant escaping a wild animal; today it might mean swerving to avoid a head-on car crash.

It has been thought for some years that mammals have two decision-making systems in their brains which operate at different speeds to cope with different situations. New research from the University of Bristol supports this theory and has shown that the evolutionary pressures arising from the older, faster, but less accurate, part of the brain may have shaped the more recent development of the slower-acting but more precise cortex, found in humans and higher animals. The research is published today in Proceedings of the Royal Society B.

Pete Trimmer, lead author on the study, explained: "If we compare the brain of a human with that of a reptile, we find they are very similar except that mammals have a large 'outer cortex' around the outside of the existing 'sub-cortical' brain, that is common to other vertebrates.

"The fact that lizards make decisions indicates that the sub-cortical brain in humans is also likely to be used in decision-making. However, fMRI scans now reveal that parts of the outer cortex (which developed more recently in our evolutionary past) are also used when making decisions."

Why does the brain need these two decision-making areas? What benefit does the new cortex bring? After all, extra brain means extra weight and energy required to carry it around. Furthermore, is the older sub-cortical system now largely redundant? If so, could we expect it to atrophy in future humans so our brains become smaller?

To address these questions, Trimmer built theoretical models representing the two systems in which the sub-cortical system was assumed to act very quickly but inaccurately, whereas the cortex allowed information to be gathered before making an informed decision, and was therefore slower.

The results of their modelling showed that when the threat level is high, such as the risk of being attacked by a dangerous animal, it is very useful to have the fast-acting, if inaccurate, system. But when dealing with situations which don't occur very often, or complex scenarios with many conflicting cues such as social situations, the cortical system is of more use than the sub-cortical system.

Trimmer commented: "As life became more complex, the benefit of gathering information before making a decision put an evolutionary pressure on the early brain. This may have led to the rapid development of the cortex in mammals. So if humans continue to live in a world of dangers such as wild animals or fast-moving cars, there will still be an evolutionary benefit to maintaining the sub-cortical system, and it is unlikely to atrophy in future humans."

Source: University of Bristol

Explore further: Italian olive tree disease stumps EU

add to favorites email to friend print save as pdf

Related Stories

Depression gets pinned with acupuncture treatment

Sep 17, 2010

Acupuncture produces significant changes in parts of the brain that regulate emotional states and is a biologically plausible treatment for depression and other neuropsychiatric disorders, UNSW researchers ...

Recommended for you

Italian olive tree disease stumps EU

13 hours ago

EU member states are divided on how to stop the spread of a disease affecting olive trees in Italy that could result in around a million being cut down, officials said Friday.

China starts relocating endangered porpoises: Xinhua

18 hours ago

Chinese authorities on Friday began relocating the country's rare finless porpoise population in a bid to revive a species threatened by pollution, overfishing and heavy traffic in their Yangtze River habitat, ...

A long-standing mystery in membrane traffic solved

19 hours ago

In 2013, James E. Rothman, Randy W. Schekman, and Thomas C. Südhof won the Nobel Prize in Physiology or Medicine for their discoveries of molecular machineries for vesicle trafficking, a major transport ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Egnite
not rated yet Jul 09, 2008
Hmm, going by this article I would expect our brains will grow in size, well atleast the sociable and active people out there will. With our complex social groups the cortical system should increase as will the sub-cortical with all our present dangers and hobbies (e.g. cars, extreme sports).

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.